Share Email Print

Proceedings Paper

Performance evaluation of a differential phase-contrast cone-beam (DPC-CBCT) system for soft tissue imaging
Author(s): Yang Yu; Ruola Ning; Weixing Cai
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Differential phase-contrast (DPC) technique is promising as the next breakthrough in the field of X-ray CT imaging. Utilizing the long ignored X-ray phase information, Differential phase-contrast (DPC) technique has the potential of providing us with projection images with higher contrast in a CT scan without increasing the X-ray dose. While traditional absorption-based X-ray imaging is not very efficient at differentiating soft tissues, differential phase-contrast (DPC) is promising as a new method to boast the quality of the CT reconstruction images in term of contrast noise ratio (CNR) in soft tissue imaging. In order to validate and investigate the use of DPC technique in cone-beam CT imaging scheme, a new bench-top micro-focus DPC-based cone-beam computed tomography DPC-CBCT system has been designed and constructed in our lab for soft tissue imaging. The DPC-CBCT system consists of a micro-focus X-ray tube (focal spot 8 μm), a high-resolution detector, a rotating phantom holder and two gratings, i.e. a phase grating and an analysis. The detector system has a phosphor screen, an optical fiber coupling unit and a CMOS chip with an effective pixel pitch of 22.5 microns. The optical elements are aligned to minimize unexpected moiré patterns, and system parameters, including tube voltage (or equivalently X-ray spectrum), distances between gratings, source-to-object distance and object-to-detector distance are chosen as practicable to be applied in a rotating system. The system is tested with two simple phantoms for performance evaluation. 3-D volumetric phase-coefficients are reconstructed. The performance of the system is compared with conventional absorption-based CT in term of contrast noise ratio (CNR) under the condition of equal X-ray dose level.

Paper Details

Date Published: 16 March 2011
PDF: 10 pages
Proc. SPIE 7961, Medical Imaging 2011: Physics of Medical Imaging, 79614X (16 March 2011); doi: 10.1117/12.878492
Show Author Affiliations
Yang Yu, Univ. of Rochester (United States)
Ruola Ning, Univ. of Rochester (United States)
Weixing Cai, Univ. of Rochester (United States)

Published in SPIE Proceedings Vol. 7961:
Medical Imaging 2011: Physics of Medical Imaging
Norbert J. Pelc; Ehsan Samei; Robert M. Nishikawa, Editor(s)

© SPIE. Terms of Use
Back to Top