Share Email Print
cover

Proceedings Paper

3D non-rigid registration using surface and local salient features for transrectal ultrasound image-guided prostate biopsy
Author(s): Xiaofeng Yang; Hamed Akbari; Luma Halig; Baowei Fei
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

We present a 3D non-rigid registration algorithm for the potential use in combining PET/CT and transrectal ultrasound (TRUS) images for targeted prostate biopsy. Our registration is a hybrid approach that simultaneously optimizes the similarities from point-based registration and volume matching methods. The 3D registration is obtained by minimizing the distances of corresponding points at the surface and within the prostate and by maximizing the overlap ratio of the bladder neck on both images. The hybrid approach not only capture deformation at the prostate surface and internal landmarks but also the deformation at the bladder neck regions. The registration uses a soft assignment and deterministic annealing process. The correspondences are iteratively established in a fuzzy-to-deterministic approach. B-splines are used to generate a smooth non-rigid spatial transformation. In this study, we tested our registration with pre- and postbiopsy TRUS images of the same patients. Registration accuracy is evaluated using manual defined anatomic landmarks, i.e. calcification. The root-mean-squared (RMS) of the difference image between the reference and floating images was decreased by 62.6±9.1% after registration. The mean target registration error (TRE) was 0.88±0.16 mm, i.e. less than 3 voxels with a voxel size of 0.38×0.38×0.38 mm3 for all five patients. The experimental results demonstrate the robustness and accuracy of the 3D non-rigid registration algorithm.

Paper Details

Date Published: 2 March 2011
PDF: 8 pages
Proc. SPIE 7964, Medical Imaging 2011: Visualization, Image-Guided Procedures, and Modeling, 79642V (2 March 2011); doi: 10.1117/12.878153
Show Author Affiliations
Xiaofeng Yang, Emory Univ. (United States)
Hamed Akbari, Emory Univ. (United States)
Luma Halig, Emory Univ. (United States)
Baowei Fei, Emory Univ. (United States)


Published in SPIE Proceedings Vol. 7964:
Medical Imaging 2011: Visualization, Image-Guided Procedures, and Modeling
Kenneth H. Wong; David R. Holmes, Editor(s)

© SPIE. Terms of Use
Back to Top