Share Email Print
cover

Proceedings Paper

1125-nm quantum dot laser for tonsil thermal therapy
Author(s): Kathleen McMillan
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Thermal therapy has the potential to provide a nonexcisional alternative to tonsillectomy. Clinical implementation requires that the lymphoid tissue of tonsils is heated homogeneously to produce an amount of primary thermal injury that corresponds to gradual postoperative tonsil shrinkage, with minimal risk of damage to underlying critical blood vessels. Optical constants are derived for tonsils from tissue components and used to calculate the depth of 1/e of irradiance. The 1125 nm wavelength is shown to correspond to both deep penetration and minimal absorption by blood. A probe for tonsil thermal therapy that comprises two opposing light emitting, temperature controlled surfaces is described. For ex vivo characterization of tonsil heating, a prototype 1125 nm diode laser is used in an experimental apparatus that splits the laser output into two components, and delivers the radiation to sapphire contact window surfaces of two temperature controlled cells arranged to irradiate human tonsil specimens from opposing directions. Temperatures are measured with thermocouple microprobes at located points within the tissue during and after irradiation. Primary thermal damage corresponding to the recorded thermal histories are calculated from Arrhenius parameters for human tonsils. Results indicate homogeneous heating to temperatures corresponding to the threshold of thermal injury and above can be achieved in advantageously short irradiation times.

Paper Details

Date Published: 24 February 2011
PDF: 11 pages
Proc. SPIE 7901, Energy-based Treatment of Tissue and Assessment VI, 79010X (24 February 2011); doi: 10.1117/12.876321
Show Author Affiliations
Kathleen McMillan, gRadiant Research, LLC (United States)


Published in SPIE Proceedings Vol. 7901:
Energy-based Treatment of Tissue and Assessment VI
Thomas P. Ryan, Editor(s)

© SPIE. Terms of Use
Back to Top