Share Email Print

Proceedings Paper

High-order QAM transmission for the future optical transport network beyond 100Gb/s
Author(s): Takayuki Kobayashi
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Higher-order multi-level modulation formats are very attractive for achieving the high spectral efficiency and high speed channels needed to accommodate ultra-high speed client signals on the optical transport network (OTN). In particular, quadrature amplitude modulation (QAM) is a promising modulation technique to achieve the high spectral efficiency with PDM. However, required OSNR is increased and transmission distance is restricted as the number of signal point increase. Moreover, system requirements, such as laser line-width, ADC/DAC resolution, and circuit linearity, become severe. We recently demonstrated the 3000-km-class long-haul transmission of a single channel 160 Gb/s 16-QAM signal. We employed three key technologies; optical 16-QAM signal synthesis by superposing two optical QPSK signals, proposed pilot-less detection scheme with digital PLL-based frequency offset compensator and OSNR improvement by ultra low-loss fiber and EDFA/distributed Raman amplification. In this paper, we review system configurations for higher-order QAM, and then describe the single channel transmission performance of 16-QAM.

Paper Details

Date Published: 24 January 2011
PDF: 7 pages
Proc. SPIE 7960, Coherent Optical Communication: Components, Subsystems, and Systems, 79600K (24 January 2011); doi: 10.1117/12.876026
Show Author Affiliations
Takayuki Kobayashi, NTT Corp. (Japan)

Published in SPIE Proceedings Vol. 7960:
Coherent Optical Communication: Components, Subsystems, and Systems
Guifang Li; Dieter Stefan Jäger, Editor(s)

© SPIE. Terms of Use
Back to Top