Share Email Print
cover

Proceedings Paper

Pupil engineering for a confocal reflectance line-scanning microscope
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Confocal reflectance microscopy may enable screening and diagnosis of skin cancers noninvasively and in real-time, as an adjunct to biopsy and pathology. Current confocal point-scanning systems are large, complex, and expensive. A confocal line-scanning microscope, utilizing a of linear array detector can be simpler, smaller, less expensive, and may accelerate the translation of confocal microscopy in clinical and surgical dermatology. A line scanner may be implemented with a divided-pupil, half used for transmission and half for detection, or with a full-pupil using a beamsplitter. The premise is that a confocal line-scanner with either a divided-pupil or a full-pupil will provide high resolution and optical sectioning that would be competitive to that of the standard confocal point-scanner. We have developed a confocal line-scanner that combines both divided-pupil and full-pupil configurations. This combined-pupil prototype is being evaluated to determine the advantages and limitations of each configuration for imaging skin, and comparison of performance to that of commercially available standard confocal point-scanning microscopes. With the combined configuration, experimental evaluation of line spread functions (LSFs), contrast, signal-to-noise ratio, and imaging performance is in progress under identical optical and skin conditions. Experimental comparisons between divided-pupil and full-pupil LSFs will be used to determine imaging performance. Both results will be compared to theoretical calculations using our previously reported Fourier analysis model and to the confocal point spread function (PSF). These results may lead to a simpler class of confocal reflectance scanning microscopes for clinical and surgical dermatology.

Paper Details

Date Published: 1 March 2011
PDF: 7 pages
Proc. SPIE 7904, Three-Dimensional and Multidimensional Microscopy: Image Acquisition and Processing XVIII, 790416 (1 March 2011); doi: 10.1117/12.875688
Show Author Affiliations
Yogesh G. Patel, Northeastern Univ. (United States)
Milind Rajadhyaksha, Memorial Sloan-Kettering Cancer Ctr. (United States)
Charles A. DiMarzio, Northeastern Univ. (United States)


Published in SPIE Proceedings Vol. 7904:
Three-Dimensional and Multidimensional Microscopy: Image Acquisition and Processing XVIII
Jose-Angel Conchello; Carol J. Cogswell; Tony Wilson; Thomas G. Brown, Editor(s)

© SPIE. Terms of Use
Back to Top