Share Email Print
cover

Proceedings Paper

Lateral lasing and ASE reduction in VECSELs
Author(s): Chris Hessenius; Mahmoud Fallahi; Jerome Moloney; Robert Bedford
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Vertical external cavity surface emitting lasers (VECSELs) are attractive for many applications due to their high-power, high-brightness outputs. In order to power scale the devices, the pump spot size should be increased. However, the large pump area greatly amplifies the guided spontaneous emission in the epitaxial plane. In order to efficiently power scale the devices, amplified spontaneous emission (ASE) and lateral lasing must be reduced. We begin by first reporting on the temperature dependence of the phenomena. Particularly, since the quantum well gain and bandgap are functions of temperature, ASE and lateral lasing are greatly dependent on the operating temperature as well as the pump power. The easiest method of quantifying the affect of ASE and lateral lasing is by removing the Fabry-Perot cavity formed by the chip edges. We have chosen two different methods: Reducing the Fresnel reflections by patterning the edges of the sample, and depositing a layer of Ge on the edges of the VECSEL chip as the high index of refraction for Ge should reduce the Fresnel reflections and the absorption properties in the NIR regime should also act to prevent feedback into the pump area. Our research shows both of these methods have increased the performance and visibly decreased the amount of lateral lasing seen in the devices.

Paper Details

Date Published: 21 February 2011
PDF: 8 pages
Proc. SPIE 7919, Vertical External Cavity Surface Emitting Lasers (VECSELs), 791909 (21 February 2011); doi: 10.1117/12.875595
Show Author Affiliations
Chris Hessenius, College of Optical Sciences, The Univ. of Arizona (United States)
Mahmoud Fallahi, College of Optical Sciences, The Univ. of Arizona (United States)
Jerome Moloney, College of Optical Sciences, The Univ. of Arizona (United States)
Robert Bedford, Air Force Research Lab. (United States)


Published in SPIE Proceedings Vol. 7919:
Vertical External Cavity Surface Emitting Lasers (VECSELs)
Ursula Keller, Editor(s)

© SPIE. Terms of Use
Back to Top