Share Email Print
cover

Proceedings Paper

Detection of concealed substances in sealed opaque plastic and coloured glass containers using SORS
Author(s): Matthew Bloomfield; Paul W. Loeffen; Pavel Matousek
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The reliable detection of concealed substances in sealed opaque plastic and coloured glass containers, with low falsealarm rate, is a problem in numerous areas of security. For example, in aviation security, there is no reliable methodology for alarm resolution of substances with high chemical specificity unless the substances are in optically transparent containers. We present a recently developed method called Spatially Offset Raman Spectroscopy (SORS) which enables the discrimination of the Raman spectrum of the content substance from the Raman spectrum of the container material with no prior knowledge of either, thereby allowing unambiguous identification of the container contents. The method is effective with coloured plastic containers that are several millimetres thick and which are not see-through to the eye and also for coloured glass bottles. Such cases do not typically yield to conventional backscatter Raman spectroscopy (or have poor false-alarm rates) since the content signal is often overwhelmed by the signal from the container, which may in addition have a strong interfering fluorescence background. SORS measurement can be performed in a few seconds by shining a laser light onto the container and then measuring the Raman signal at the excitation point but also at one or more offset positions. Each measurement has different relative orthogonal contributions from the container and contents Raman spectra, so that, with no prior knowledge, the pure spectra of both the container and contents can be extracted - either by scaled subtraction or via multivariate statistical methods. The content spectrum can then be compared to a reference library of pure materials to give a threat evaluation with a confidence level not compromised by interfering signals originating from the container wall. In this paper, we describe the methods and their optimization, and characterize their performance in practical screening applications. The study shows that there is frequently a well-defined optimum spatial offset that maximizes the signal to noise ratio (SNR) of the resultant SORS spectrum and that this optimum can vary greatly depending on content and container material. It is also shown for the first time that, for a fixed total acquisition time available, a very high fraction of this time should be spent acquiring the offset spectrum. For common samples, the best results were obtained where the offset measurement was acquired for 20x longer than the zero offset position.

Paper Details

Date Published: 12 October 2010
PDF: 15 pages
Proc. SPIE 7838, Optics and Photonics for Counterterrorism and Crime Fighting VI and Optical Materials in Defence Systems Technology VII, 783808 (12 October 2010); doi: 10.1117/12.874724
Show Author Affiliations
Matthew Bloomfield, Cobalt Light Systems Ltd. (United Kingdom)
Paul W. Loeffen, Cobalt Light Systems Ltd. (United Kingdom)
Pavel Matousek, Cobalt Light Systems Ltd. (United Kingdom)
Rutherford Appleton Lab. (United Kingdom)


Published in SPIE Proceedings Vol. 7838:
Optics and Photonics for Counterterrorism and Crime Fighting VI and Optical Materials in Defence Systems Technology VII
Colin Lewis; Roberto Zamboni; François Kajzar; Doug Burgess; Emily M. Heckman, Editor(s)

© SPIE. Terms of Use
Back to Top