Share Email Print
cover

Proceedings Paper

Design and optimisation of VECSELs for the IR and mid-IR
Author(s): J. Hader; Tsuei-Lian Wang; J. Michael Yarborough; Colm A. Dineen; Yushi Kaneda; J. V. Moloney; Bernardette Kunert; Wolfgang Stolz; S. W. Koch
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

An approach based on fully microscopically computed material properties like gain/absorption, radiative and Auger recombination rates are used to design, analyze and develop optimization strategies for Vertical External Cavity Surface Emitting Lasers for the IR and mid-IR with high quantitative accuracy. The microscopic theory is used to determine active regions that are optimized to have minimal carrier losses and associated heating while maintaining high optical gain. It is shown that in particular for devices in the mid-IR wavelength range the maximum output power can be improved by more than 100% by making rather minor changes to the quantum well design. Combining the sophisticated microscopic models with simple onedimensional macroscopic models for optical modes, heat and carrier diffusion, it is shown how the external efficiency can be strongly improved using surface coatings that reduce the pump reflection while retaining the gain enhancing cavity effects at the lasing wavelength. It is shown how incomplete pump absorption can be reduced using optimized metallization layers. This increases the efficiency, reduces heating and strongly improves the maximum power. Applying these concepts to VECSELs operating at 1010nm has already resulted in more than twice as high external efficiencies and maximum powers. The theory indicates that significant further improvements are possible - especially for VECSELs in the mid-IR.

Paper Details

Date Published: 21 February 2011
PDF: 11 pages
Proc. SPIE 7919, Vertical External Cavity Surface Emitting Lasers (VECSELs), 79190M (21 February 2011); doi: 10.1117/12.873921
Show Author Affiliations
J. Hader, College of Optical Sciences, The Univ. of Arizona (United States)
Nonlinear Control Strategies Inc. (United States)
Tsuei-Lian Wang, College of Optical Sciences, The Univ. of Arizona (United States)
J. Michael Yarborough, College of Optical Sciences, The Univ. of Arizona (United States)
Colm A. Dineen, College of Optical Sciences, The Univ. of Arizona (United States)
Yushi Kaneda, College of Optical Sciences, The Univ. of Arizona (United States)
J. V. Moloney, College of Optical Sciences, The Univ. of Arizona (United States)
Nonlinear Control Strategies Inc. (United States)
Bernardette Kunert, Philipps Univ. of Marburg (Germany)
NAsP-III/V GmbH (Germany)
Wolfgang Stolz, Philipps Univ. of Marburg (Germany)
NAsP-III/V GmbH (Germany)
S. W. Koch, Philipps-Univ. of Marburg (Germany)


Published in SPIE Proceedings Vol. 7919:
Vertical External Cavity Surface Emitting Lasers (VECSELs)
Ursula Keller, Editor(s)

© SPIE. Terms of Use
Back to Top