Share Email Print

Proceedings Paper

Simulation-based determination of local optical probing uncertainty for fringe projection measurements
Author(s): Johannes Weickmann
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Fringe projection sensors gain in importance in manufacturing quality control due to their multiple advantages. In order to adapt the measurement strategy to a specific inspection task, both a suitable sensor and the necessary measurements have to be chosen, so that the complete workpiece shape is recorded with a tolerance-compatible measurement uncertainty. Thus a reliable forecast of the measurement uncertainty is crucial for an effective inspection-planning procedure. There are multiple influences, whose impacts on the measurement result vary dependent on the position of each measured point. So the local measurement uncertainty at each measured point - here called 'local optical probing uncertainty' - is individual. Today, this local probing uncertainty cannot be predicted. This paper shows a simulationbased approach to eliminate this shortfall. Firstly, a definition for local optical probing uncertainty is given. Then the model for the simulation of fringe projection measurements - including a GUM-compliant forecast for the local probing uncertainty - is described. This simulation is then implemented into an assistance system that supports the inspection planner when setting up the measurement strategy. Finally a method for the experimental verification of the local optical probing uncertainty is introduced and the simulation results are verified.

Paper Details

Date Published: 27 January 2011
PDF: 12 pages
Proc. SPIE 7864, Three-Dimensional Imaging, Interaction, and Measurement, 78640C (27 January 2011); doi: 10.1117/12.871983
Show Author Affiliations
Johannes Weickmann, Friedrich-Alexander-Univ. Erlangen-Nürnberg (Germany)

Published in SPIE Proceedings Vol. 7864:
Three-Dimensional Imaging, Interaction, and Measurement
J. Angelo Beraldin; Ian E. McDowall; Atilla M. Baskurt; Margaret Dolinsky; Geraldine S. Cheok; Michael B. McCarthy; Ulrich Neuschaefer-Rube, Editor(s)

© SPIE. Terms of Use
Back to Top