Share Email Print

Proceedings Paper

A novel structure photonic crystal fiber based on bismuth-oxide for optical parametric amplification
Author(s): Cang Jin; Jinhui Yuan; Chongxiu Yu
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The heavy metal oxide glasses containing bismuth such as bismuth sesquioxide show unique high refractive index. In addition, the bismuth-oxide based glass does not include toxic elements such as Pb, As, Se, Te, and exhibits well chemical, mechanical and thermal stability. Hence, it is used to fabricate high nonlinear fiber for nonlinear optical application. Although the bismuth-oxide based high nonlinear fiber can be fusion-spliced to conventional silica fibers and have above advantages, yet it suffers from large group velocity dispersion because of material chromatic dispersion which restricts its utility. In regard to this, the micro-structure was introduced to adjust the dispersion of bismuth-oxide high nonlinear fiber in the 1550nm wave-band. In this paper, a hexagonal solid-core micro-structure is developed to balance its dispersion and nonlinearity. Our simulation and calculation results show that the bismuth-oxide based photonic crystal fiber has near zero dispersion around 1550nm where the optical parametric amplification suitable wavelength is. Its dispersion slop in the communication wavelength range is also relatively flat. Moreover, both nonlinear coefficient and model filed distribution were simulated, respectively.

Paper Details

Date Published: 17 November 2010
PDF: 8 pages
Proc. SPIE 7848, Holography, Diffractive Optics, and Applications IV, 78482K (17 November 2010); doi: 10.1117/12.870284
Show Author Affiliations
Cang Jin, Beijing Univ. of Posts and Telecommunications (China)
Jinhui Yuan, Beijing Univ. of Posts and Telecommunications (China)
Chongxiu Yu, Beijing Univ. of Posts and Telecommunications (China)

Published in SPIE Proceedings Vol. 7848:
Holography, Diffractive Optics, and Applications IV
Yunlong Sheng; Chongxiu Yu; Linsen Chen, Editor(s)

© SPIE. Terms of Use
Back to Top