Share Email Print

Proceedings Paper

PEM-based polarimeters for industrial applications
Author(s): Baoliang Wang
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

A polarimeter is an optical instrument used in the transmissive mode for determining the polarization state of a light beam, or the polarization-altering properties of a sample, such as diattenuation, retardation and depolarizion.1 (Reflective "polarimeters" are typically called ellipsometers.) Polarimeters can, thus, be broadly categorized as either light-measuring polarimeters or sample-measuring polarimeters. A light-measuring polarimeter is also known as a Stokes polarimeter, which measures the polarization state of a light beam as described by the Stokes parameters. A sample-measuring polarimeter is also known as a Mueller polarimeter, which measures the complete set or a subset of polarization-altering properties of a sample. Polarimeters can also be categorized by whether they measure the complete set of polarization properties. If a Stokes polarimeter measures all four Stokes parameters, it is called a complete Stokes polarimeter; otherwise, an incomplete or a special Stokes polarimeter. Similarly, there are complete and incomplete Mueller polarimeters. Nearly all samplemeasuring polarimeters are incomplete or special polarimeters, particularly for industrial applications. These special polarimeters bear different names. For example, a circular dichroism spectrometer, which measures the differential absorption between left and right circularly polarized light (▵;A= AL - AR), is a special polarimeter for measuring the circular diattenuation of a sample; a linear birefringence measurement system is a special polarimeter for measuring the linear retardation of a sample. Polarimeters have a broad range of applications in both academic research and industrial metrology. Polarimeters are applied to chemistry, biology, physics, astronomy, material science and many other scientific areas. Polarimeters are used as metrology tools in the semiconductor, fiber telecommunication, flat panel display, pharmaceutical and many other industries. Different branches of polarimetry have established their own scientific communities, within which regular conferences are held.2-6 Tens of thousands of articles have been published on polarimeters and their applications, including books and many review articles.1, 7-15 In this paper, I will focus on polarimeters using the photoelastic modulator (PEM).16-18

Paper Details

Date Published: 4 November 2010
PDF: 14 pages
Proc. SPIE 7855, Optical Metrology and Inspection for Industrial Applications, 785502 (4 November 2010); doi: 10.1117/12.870044
Show Author Affiliations
Baoliang Wang, Hinds Instruments, Inc. (United States)

Published in SPIE Proceedings Vol. 7855:
Optical Metrology and Inspection for Industrial Applications
Kevin Harding; Peisen S. Huang; Toru Yoshizawa, Editor(s)

© SPIE. Terms of Use
Back to Top