Share Email Print
cover

Proceedings Paper

Design of a large area 3D surface structure measurement system
Author(s): Shenghuai Wang; Xin Li; Yurong Chen; Tiebang Xie
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Surface texture plays a vital role in modern engineering products. Currently surface metrology discipline is undergoing a paradigm shift from 2D profile to 3D areal and from stochastic to structured surface characterization. Areal surface texture measurements have greater fully functional significance parameters, better repeatability and more effectively visual express than profile measurements. The existing white light microscopy interference measurement can be used for the non-contact measurement of areal surface texture. However, the measurement field and lateral resolution of this method is restricted to the numerical aperture of objective. To address this issue, a type of vertical scanning white light interference stitching measurement system with large area and seamless has been built up in this paper. This system is based on the compound optical microscopy system and 3D precision displacement system with large travel, nanometer level and displacement measurement. The CCD calibration and angles calculation between CCD and level worktables are settled depending on the measurement system itself. A non-orthogonal worktable moving strategy is used for the seamless stitching measurement of this measurement method, which reduces the cost of stitching and enlarges the measurement field. Therefore the problem, which the lateral resolution and the measurement filed are restricted to the numerical aperture of objective, is solved. An automatic search and location method of fringe for white light interference measurement based on the normalized standard deviation of gray value of interference microscopy images is proposed to solve the problem of inefficiency for the search of interference fringe by hand.

Paper Details

Date Published: 11 October 2010
PDF: 6 pages
Proc. SPIE 7656, 5th International Symposium on Advanced Optical Manufacturing and Testing Technologies: Optical Test and Measurement Technology and Equipment, 76562Z (11 October 2010); doi: 10.1117/12.869335
Show Author Affiliations
Shenghuai Wang, Hubei Automotive Industries Institute (China)
Huazhong Univ. of Science and Technology (China)
Xin Li, Hubei Automotive Industries Institute (China)
Yurong Chen, Hubei Automotive Industries Institute (China)
Tiebang Xie, Huazhong Univ. of Science and Technology (China)


Published in SPIE Proceedings Vol. 7656:
5th International Symposium on Advanced Optical Manufacturing and Testing Technologies: Optical Test and Measurement Technology and Equipment
Yudong Zhang; Jose M. Sasian; Libin Xiang; Sandy To, Editor(s)

© SPIE. Terms of Use
Back to Top