Share Email Print
cover

Proceedings Paper

Coping with low modulation in speckle interferometry: a novel approach based on the Delaunay triangulation
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Interferometric signals involving speckle waves invariably exhibit phase indeterminations. These indeterminations arise at the zero-intensities of the speckle fields, or singularities, and show themselves as a net loss of modulation depth of the interferometric signals. To bypass the difficulty associated with the processing of low modulated parts of speckle interferometry signals, we propose a novel approach based on the Delaunay triangulation (DT). The method applies in both situations of static and dynamic regimes, and is designated respectively by "sine-cosine DT filter" and "3D piecewise processing" or 3DPP - 3D denoting the temporal and the two spatial coordinates of the recording. The task consists in discarding purely and simply the under-modulated parts of the signal according to a user-defined binary criterion, and filling the missing parts by interpolation. This first step provides a grid with nodes randomly occupied by reliable phase values or empty. At the empty nodes, the computed phase values result from a DT ensuring that the interpolation relies on the three closest well-behaved neighbors, followed by spline-fitting a smooth surface over them. In a dynamic regime - where the benefits of the temporal approach are unanimously acknowledged - the empirical mode decomposition is used to select the valid intervals and the Hilbert transform to compute phase data therein. We give a detailed description of the DT filtering techniques, show their ability to offer the optimal compromise between spatial and measurement resolutions depending on the user-chosen binary criterion and highlight some definite advantages over classical filtering methods in terms of phase error reduction and algorithmic complexity.

Paper Details

Date Published: 13 September 2010
PDF: 10 pages
Proc. SPIE 7387, Speckle 2010: Optical Metrology, 738709 (13 September 2010); doi: 10.1117/12.868466
Show Author Affiliations
Sébastien Equis, EPFL-STI-NAM, Swiss Federal Institute of Technology Lausanne (Switzerland)
Pierre Jacquot, EPFL-STI-NAM, Swiss Federal Institute of Technology Lausanne (Switzerland)


Published in SPIE Proceedings Vol. 7387:
Speckle 2010: Optical Metrology
Armando Albertazzi Goncalves; Guillermo H. Kaufmann, Editor(s)

© SPIE. Terms of Use
Back to Top