Share Email Print

Proceedings Paper

Auto-measurement system of aerial camera lens' resolution based on orthogonal linear CCD
Author(s): Yu-liang Zhao; Yu-ye Zhang; Hong-yi Ding
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The resolution of aerial camera lens is one of the most important camera's performance indexes. The measurement and calibration of resolution are important test items in in maintenance of camera. The traditional method that is observing resolution panel of collimator rely on human's eyes using microscope and doing some computing. The method is of low efficiency and susceptible to artificial factors. The measurement results are unstable, too. An auto-measurement system of aerial camera lens' resolution, which uses orthogonal linear CCD sensor as the detector to replace reading microscope, is introduced. The system can measure automatically and show result real-timely. In order to measure the smallest diameter of resolution panel which could be identified, two orthogonal linear CCD is laid on the imaging plane of measured lens and four intersection points are formed on the orthogonal linear CCD. A coordinate system is determined by origin point of the linear CCD. And a circle is determined by four intersection points. In order to obtain the circle's radius, firstly, the image of resolution panel is transformed to pulse width of electric signal which is send to computer through amplifying circuit and threshold comparator and counter. Secondly, the smallest circle would be extracted to do measurement. The circle extraction made using of wavelet transform which has character of localization in the domain of time and frequency and has capability of multi-scale analysis. Lastly, according to the solution formula of lens' resolution, we could obtain the resolution of measured lens. The measuring precision on practical measurement is analyzed, and the result indicated that the precision will be improved when using linear CCD instead of reading microscope. Moreover, the improvement of system error is determined by the pixel's size of CCD. With the technique of CCD developed, the pixel's size will smaller, the system error will be reduced greatly too. So the auto-measuring system has high practical value and wide application prospect.

Paper Details

Date Published: 12 October 2010
PDF: 6 pages
Proc. SPIE 7656, 5th International Symposium on Advanced Optical Manufacturing and Testing Technologies: Optical Test and Measurement Technology and Equipment, 76566J (12 October 2010); doi: 10.1117/12.866302
Show Author Affiliations
Yu-liang Zhao, Navy Aeronautical and Astronautical Univ. (China)
Yu-ye Zhang, Navy Aeronautical and Astronautical Univ. (China)
Hong-yi Ding, Navy Aeronautical and Astronautical Univ. (China)

Published in SPIE Proceedings Vol. 7656:
5th International Symposium on Advanced Optical Manufacturing and Testing Technologies: Optical Test and Measurement Technology and Equipment
Yudong Zhang; Jose M. Sasian; Libin Xiang; Sandy To, Editor(s)

© SPIE. Terms of Use
Back to Top