Share Email Print

Proceedings Paper

Defocus compensation system of long focal aerial camera based on auto-collimation
Author(s): Yu-ye Zhang; Yu-liang Zhao; Zhao-lin Xu
Format Member Price Non-Member Price
PDF $17.00 $21.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Nowadays, novel aerial reconnaissance camera emphasizes on the shooting performance in high altitude or in long distance of oblique photography. In order to obtain the larger scale pictures which are easier for image interpretation, we need the camera has long focal length. But long focal length camera is easier to be influenced by environmental condition and lead to great change of lens' back focus which can result in the lens' resolution decreased greatly. So, we should do precise defocusing compensation to long focal aerial camera system. In order to realize defocusing compensation, a defocusing compensation system based on autocollimation is designed. Firstly, the reason which can lead to long focal camera's defocusing was discussed, then the factors such as changes of atmospheric pressure and temperature and oblique photographic distance were pointed out, and mathematical equation which could compute camera's defocusing amount was presented. Secondly, after camera's defocusing was analyzed, electro-optical autocollimation of higher automation and intelligent was adopted in the system. Before shooting , focal surface was located by electro-optical autocollimation focal detection mechanism, the data of airplane's height was imported through electronic control system. Defocusing amount was corrected by computing defocusing amount and the signal was send to focusing control motor. And an efficient improved mountain climb-searching algorithm was adopted for focal surface locating in the correction process. When confirming the direction of curve, the improved algorithm considered both twice focusing results and four points. If four points continue raised, the curve would be confirmed as rising direction. On the other hand, if four points continue decreased, the curve would be confirmed as decrease direction. In this way, we could avoid the local peak value appeared in two focusing steps. The defocusing compensation system consists of optical component and precise control system and precise driver component. Based on FPGA hardware system, hardware function is realized by VHDL. It has been using on some kinds of long focal CCD cameras and film cameras. It not only has good dimensional stability and structural stability in harsh environment, but also has ability of focal surface precision detection and accurate focusing.

Paper Details

Date Published: 12 October 2010
PDF: 8 pages
Proc. SPIE 7656, 5th International Symposium on Advanced Optical Manufacturing and Testing Technologies: Optical Test and Measurement Technology and Equipment, 76566K (12 October 2010); doi: 10.1117/12.866299
Show Author Affiliations
Yu-ye Zhang, Navy Aeronautical and Astronautical Univ. (China)
Yu-liang Zhao, Navy Aeronautical and Astronautical Univ. (China)
Zhao-lin Xu, Navy Aeronautical and Astronautical Univ. (China)

Published in SPIE Proceedings Vol. 7656:
5th International Symposium on Advanced Optical Manufacturing and Testing Technologies: Optical Test and Measurement Technology and Equipment
Yudong Zhang; Jose M. Sasian; Libin Xiang; Sandy To, Editor(s)

© SPIE. Terms of Use
Back to Top