Share Email Print
cover

Proceedings Paper

Optimizing operating parameters of spectrophotometer for testing transmission spectrum of optical substrate
Author(s): Huasong Liu; Dandan Liu; Yiqin Ji; Zhanshan Wang; Deying Chen; Zhengxiang Shen; Bin Ma; Wei Zhang; Muxiao Liu; Zhixin Wu; Ri Wang
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The optical characteristics of substrates are the essential content of research work for thin film optics. The spectrophotometer is one of the important instruments to test transmittance and reflectance of different substrates or coating components. The test accuracy of transmission spectrum of the substrates has direct influenced on optical constants reverse engineering of thin film on the substrate. In this paper, SCHOTT grade LITHOSIL_Q0 fused silica substrate was chosen as standard substrate and was tested transmission spectrum in region 380nm-860nm to use the Lambda-900 spectrophotometer. By comparing the measured transmission spectrum with standard SCHOTT grade LITHOSIL_Q0 fused silica substrate transmission spectrum can be calculated measured errors. In the experiments, the orthogonal experimental design method is used. Sample pool aperture, scan speed, slit width and sampling data interval operating parameters were chosen as key factors (three levels were chosen in each factor). L9 (34) orthogonal table was used for analysis the experiments results. Nine experiment results analyzed to determine the operating parameters of the influence measured accuracy were as follows: the sample pool aperture, scan speed, slit width, the sampling data interval. Finally, no iris, scan speed 250nm/s, slit width 3nm, sampling data interval 1nm were used a combination of the operating parameters to measure of transmission spectrum of the SCHOTT grade LITHOSIL_Q0 samples. Measured maximum and minimum absolute error are 0.1355% and 0.0771%, respectively. The operating parameters could be applied to transmittance spectrum test of every substrate, or the spectrum could be extended.

Paper Details

Date Published: 11 October 2010
PDF: 6 pages
Proc. SPIE 7656, 5th International Symposium on Advanced Optical Manufacturing and Testing Technologies: Optical Test and Measurement Technology and Equipment, 765604 (11 October 2010); doi: 10.1117/12.866185
Show Author Affiliations
Huasong Liu, Tongji Univ. (China)
Tianjin Key Lab. of Optical Thin Film (China)
Dandan Liu, Tianjin Key Lab. of Optical Thin Film (China)
Yiqin Ji, Tianjin Key Lab. of Optical Thin Film (China)
Harbin Institute of Technology (China)
Zhanshan Wang, Tongji Univ. (China)
Deying Chen, Harbin Institute of Technology (China)
Zhengxiang Shen, Tongji Univ. (China)
Bin Ma, Tongji Univ. (China)
Wei Zhang, Tianjin Key Lab. of Optical Thin Film (China)
Muxiao Liu, Military Representatives Bureau of NED, Tianjin (China)
Zhixin Wu, Tianjin Key Lab. of Optical Thin Film (China)
Ri Wang, Tianjin Key Lab. of Optical Thin Film (China)


Published in SPIE Proceedings Vol. 7656:
5th International Symposium on Advanced Optical Manufacturing and Testing Technologies: Optical Test and Measurement Technology and Equipment
Yudong Zhang; Jose M. Sasian; Libin Xiang; Sandy To, Editor(s)

© SPIE. Terms of Use
Back to Top