Share Email Print
cover

Proceedings Paper

Simulation and experiment of cutting force in ultrasonic torsional vibration assisted micro-milling
Author(s): Haijun Hu; Yazhou Sun; Zesheng Lu
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

A coupled thermo-mechanical model of Ultrasonic Torsional Vibration Assisted Micro-milling (UTVAM) was established with ABAQUS, the primary cause which leads to a decrease in cutting force after adding Ultrasonic Torsional Vibration (UTV) to micro-milling was analyzed. Micro-milling with and without UTV were both carried out on the self-designed UTVAM experimental system, using forged aluminum alloy. Single-factor method was used to analyze the influence rules of cutting parameters such as spindle speed, feed per tooth and depth of cut on cutting force. It was found that feed per tooth plays a more important role than other parameters, a smaller feed per tooth can have a better effects on reducing of cutting force in UTVAM.

Paper Details

Date Published: 22 October 2010
PDF: 6 pages
Proc. SPIE 7657, 5th International Symposium on Advanced Optical Manufacturing and Testing Technologies: Design, Manufacturing, and Testing of Micro- and Nano-Optical Devices and Systems, 76570T (22 October 2010); doi: 10.1117/12.865810
Show Author Affiliations
Haijun Hu, Harbin Institute of Technology (China)
Yazhou Sun, Harbin Institute of Technology (China)
Zesheng Lu, Harbin Institute of Technology (China)


Published in SPIE Proceedings Vol. 7657:
5th International Symposium on Advanced Optical Manufacturing and Testing Technologies: Design, Manufacturing, and Testing of Micro- and Nano-Optical Devices and Systems
Tianchun Ye; Sen Han; Masaomi Kameyama; Song Hu, Editor(s)

© SPIE. Terms of Use
Back to Top