Share Email Print
cover

Proceedings Paper

A space variant maximum average correlation height (MACH) filter for object recognition in real time thermal images for security applications
Author(s): Akber Gardezi; Ahmed Alkandri; Philip Birch; Rupert Young; Chris Chatwin
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

We propose a space variant Maximum Average Correlation Height (MACH) filter which can be locally modified depending upon its position in the input frame. This can be used to detect targets in an environment from varying ranges and in unpredictable weather conditions using thermal images. It enables adaptation of the filter dependant on background heat signature variances and also enables the normalization of the filter energy levels. The kernel can be normalized to remove a non-uniform brightness distribution if this occurs in different regions of the image. The main constraint in this implementation is the dependence on computational ability of the system. This can be minimized with the recent advances in optical correlators using scanning holographic memory, as proposed by Birch et al. [1] In this paper we describe the discrimination abilities of the MACH filter against background heat signature variances and tolerance to changes in scale and calculate the improvement in detection capabilities with the introduction of a nonlinearity. We propose a security detection system which exhibits a joint process where human and an automated pattern recognition system contribute to the overall solution for the detection of pre-defined targets.

Paper Details

Date Published: 12 October 2010
PDF: 14 pages
Proc. SPIE 7838, Optics and Photonics for Counterterrorism and Crime Fighting VI and Optical Materials in Defence Systems Technology VII, 78380N (12 October 2010); doi: 10.1117/12.865485
Show Author Affiliations
Akber Gardezi, Univ. of Sussex (United Kingdom)
Ahmed Alkandri, Univ. of Sussex (United Kingdom)
Philip Birch, Univ. of Sussex (United Kingdom)
Rupert Young, Univ. of Sussex (United Kingdom)
Chris Chatwin, Univ. of Sussex (United Kingdom)


Published in SPIE Proceedings Vol. 7838:
Optics and Photonics for Counterterrorism and Crime Fighting VI and Optical Materials in Defence Systems Technology VII
Colin Lewis; Roberto Zamboni; François Kajzar; Doug Burgess; Emily M. Heckman, Editor(s)

© SPIE. Terms of Use
Back to Top