Share Email Print
cover

Proceedings Paper

Winter wheat growth and grain protein uniformity monitoring through remotely sensed data
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

An uneven growing winter wheat will be slower to reach full ground cover and will be lead to uneven yield and quality for cropland. The traditional investigation of crop uniformity is mainly depends on manpower. Remote sensing technique is a potentially useful tool for monitoring the crop uniformity status for it can provide an area global view for entire field within the crop growth season with scathelessness. The objective of this study was to use remote sensing imagery to evaluate the crop growth uniformity, as well as the yield and grain quality variation for a winter wheat study area. One Quickbird image on winter wheat booting stage was collected and processed to monitoring the uniformity of wheat growth. The results indicated that the spectrum parameters of Quickbird image can reflect the spatial uniformity of winter wheat growth in the study areas. Meanwhile the spatial uniformity of wheat growth in early stage can reflect the uniformity of yield and grain quality. The wheat growth information at the booting stage has strong positive correlations with yield, and strong negative correlation with grain protein. The correlation coefficient between OSAVI (optimized soil adjusted vegetation index) and wheat yield was 0.536. It was -0.531 for GNDVI (Greeness-normalized difference vegetation index) and grain protein content. The study also indicated that diverse spectrum parameters had different sensitivity to the wheat growth spatial variance. So it is feasible to use remote sensing data to investigate the crop growth and quality spatial uniformity.

Paper Details

Date Published: 22 October 2010
PDF: 8 pages
Proc. SPIE 7824, Remote Sensing for Agriculture, Ecosystems, and Hydrology XII, 78242G (22 October 2010); doi: 10.1117/12.865162
Show Author Affiliations
Xiaoyu Song, National Engineering Research Ctr. for Information Technology in Agriculture (China)
Jihua Wang, National Engineering Research Ctr. for Information Technology in Agriculture (China)
Key Lab. for Information Technologies in Agriculture (China)
Wenjiang Huang, National Engineering Research Ctr. for Information Technology in Agriculture (China)


Published in SPIE Proceedings Vol. 7824:
Remote Sensing for Agriculture, Ecosystems, and Hydrology XII
Christopher M. U. Neale; Antonino Maltese, Editor(s)

© SPIE. Terms of Use
Back to Top