Share Email Print
cover

Proceedings Paper

Sprectroradiometric characteristics of inland water bodies infestated by Oscillatoria rubescens algae
Author(s): Giuseppe Ciraolo; Goffredo La Loggia; Antonino Maltese
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

In December 2006 blooms of Oscillatoria rubescens were found in the reservoir Prizzi in Sicily. Oscillatoria is a genus of filamentous alga comprising approximately 6 species, between these the O. rubescens is sadly famous since this organism produces microcystins which are powerful hepatotoxins. Firstly found in Europe in 1825 on Geneva lake, recently (2006) those algae has been find out in Pozzillo, Nicoletti e Ancipa reservoirs (Enna Province), as well as in Prizzi (Palermo Province) and Garcia reservoirs (Trapani Province). Toxins produced by those bacteria (usually called microcystine LR-1 and LR-2) are highly toxic since they can activate oncogenes cells causing cancer pathologies on liver and gastrointestinal tract. Even if water treatment plants should ensure the provision of safe drinking water from surface waters contaminated with those toxic algae blooms, the contamination of reservoirs used for civil and agricultural supply highlights human health risks. International literature suggests a threshold value of 0.01 μgl-1 to avoid liver cancer using water coming from contaminated water bodies for a long period. Since O. rubescens activities is strongly related to phosphate and nitrogen compounds as well as to temperature and light transmission within water, the paper presents the comparison between optical properties of the water of an infested reservoir and those of a reservoir characterized by clear water. Field campaigns were carried out in February-March 2008 in order to quantify the spectral transparencies of two water bodies through the calculation of the diffuse attenuation coefficient, measuring underwater downwelling irradiance at different depths as well as water spectral reflectance. Results show that diffuse attenuation coefficient is reduced by approximately 15% reducing light penetration in the water column; coherently reflectance spectral signature generally decreases, exhibiting a characteristic peak around 703 nm not present in uncontaminated waters. Latter findings highlight the possibility to detect O. rubescens infestations using their spectral characteristics by means of multitemporal remote sensing techniques.

Paper Details

Date Published: 22 October 2010
PDF: 8 pages
Proc. SPIE 7824, Remote Sensing for Agriculture, Ecosystems, and Hydrology XII, 78241Y (22 October 2010); doi: 10.1117/12.864674
Show Author Affiliations
Giuseppe Ciraolo, Univ. degli Studi di Palermo (Italy)
Goffredo La Loggia, Univ. degli Studi di Palermo (Italy)
Antonino Maltese, Univ. degli Studi di Palermo (Italy)


Published in SPIE Proceedings Vol. 7824:
Remote Sensing for Agriculture, Ecosystems, and Hydrology XII
Christopher M. U. Neale; Antonino Maltese, Editor(s)

© SPIE. Terms of Use
Back to Top