Share Email Print

Proceedings Paper

Study on the vegetation dynamic change using long time series of remote sensing data
Author(s): Jinlong Fan; Xiaoyu Zhang
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The vegetation covering land surface is main component of biosphere which is one of five significant spheres on the earth. The vegetation plays a very important role on the natural environment conservation and improvement to keep human being's living environment evergreen while the vegetation supplies many natural resources to human living and development continuously. Under the background of global warming, vegetation is changing as climate changes. It is not doubt that human activities have great effects on the vegetation dynamic. In general, there are two aspects of the interaction between vegetation and climate, the climatic adaptation of vegetation and the vegetation feedback on climate. On the base of the research on the long term vegetation growth dynamics, it can be found out the vegetation adaptation to climate change. The dynamic change of vegetation is the direct indicator of the ecological environment changes. Therefore, study on the dynamic change of vegetation will be very interest and useful. In this paper, the vegetation change in special region of China will be described in detail. In addition to the methods of the long term in-situ observation of vegetation, remote sensing technologies can also be used to study the long time series vegetation dynamic. The widely used NDVI was often employed to monitor the status of vegetation growth. Actually, NDVI can indicate the vigor and the fractional cover of vegetation effectively. So the long time series of NDVI datasets are a very valuable data source supporting the study on the long term vegetation dynamics. Since 1980, a series of NOAA satellites have been launched successfully, which have already supplied more than 20 years NOAA/AVHRR satellites data. In this paper, we selected Ningxia Hui autonomic region of China as the case study area and used 20 years pathfinder AVHRR NDVI data to carry out the case study on the vegetation dynamics in order to further understand the phenomena of 20 years vegetation dynamics of the whole Ningxia region. Ningxia Hui autonomic region is one of provinces in west china. Ningxia is a small region with square area of about 66, 4000 km2. Ningxia has special land cover with irrigated crop land in north and natural grass land in central and south. In addition to NDVI data, we also collected land cover and land use data and administrative border vector data with the scale of 1:4,000,000 and other data. The results show that (1)vegetation dynamic of Ningxia presents the characters of one season per year with the length of the growth season from the first decade May to the middle decade October and the range of NDVI value 0.05-0.25; the season characters vary with the local area; the max value of NDVI in the central dry area is only 0.2 and the date of reaching the peak of time series NDVI in the irrigation area is the latest while that in the south mountain area is the earliest; the Helan mountain area presents the characters of forest and the range of NDVI is narrower than those in the irrigation area and the south mountain area and higher in winter than those in two area above; in recent 18 years, the length of growth season in whole Ningxia has prolonged one decade, mainly in spring one decade in advance.(2) from 1982 to 1999, the trend of the whole Ningxia mean NDVI is increasing and presents the stable or better of vegetation growth; compared to NDVI in 1980's, NDVI in 1990's has increased already and the anomaly of growth season mean NDVI is mainly negative in 1980's while mainly positive in 1990's; NDVI in the central dry area is the lowest while NDVI in the Helan mountain is the highest; the values of NDVI in the irrigation area, the Helan mountain area and the south mountain area are higher than that of the whole Ningxia; the increasing trend of vegetation dynamic in the irrigation area, the south mountain area and the central dry area is similar with the whole Ningxia while the trend in the Helan mountain area is increasing from 1982-1988 but decreasing after 1988.

Paper Details

Date Published: 22 October 2010
PDF: 6 pages
Proc. SPIE 7824, Remote Sensing for Agriculture, Ecosystems, and Hydrology XII, 782415 (22 October 2010); doi: 10.1117/12.864670
Show Author Affiliations
Jinlong Fan, China Meteorological Administration (China)
Xiaoyu Zhang, Institute of Ningxia Meteorological Sciences (China)

Published in SPIE Proceedings Vol. 7824:
Remote Sensing for Agriculture, Ecosystems, and Hydrology XII
Christopher M. U. Neale; Antonino Maltese, Editor(s)

© SPIE. Terms of Use
Back to Top