Share Email Print
cover

Proceedings Paper

Three dimensional finite element simulation and analysis of residual stress in milling
Author(s): Haitao Liu; Yazhou Sun; Yingchun Liang; Zesheng Lu
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Framework parts are extensively used in aerospace industry and milling is its main processing method. This study aims at the milling of aluminum alloy 2024-T351. With the analysis of the milling cutter structure, the virtual topology technology was used to carry on the pretreatment of the milling cutter model, and the adaptive meshing technique was applied. Johnson-Cook's coupled thermo-mechanical model was used as the material model of workpiece. Johnson-Cook's shear failure principle was used as the material failure criterion. The modified Coulomb's law whose slide friction area is combined with sticking friction was used to compute the friction between tool and workpiece. And a more realistic three-dimensional finite element model of milling was finally established. The process of chip formation was simulated in this model. The distribution of surface residual stress at different spindle speed was obtained through finite element simulating. And with the analysis of the results, the basic affecting law of spindle speed to residual stress of machined surface was found, which provides a basis for practical machining.

Paper Details

Date Published: 6 October 2010
PDF: 5 pages
Proc. SPIE 7655, 5th International Symposium on Advanced Optical Manufacturing and Testing Technologies: Advanced Optical Manufacturing Technologies, 76551A (6 October 2010); doi: 10.1117/12.864436
Show Author Affiliations
Haitao Liu, Harbin Institute of Technology (China)
Yazhou Sun, Harbin Institute of Technology (China)
Yingchun Liang, Harbin Institute of Technology (China)
Zesheng Lu, Harbin Institute of Technology (China)


Published in SPIE Proceedings Vol. 7655:
5th International Symposium on Advanced Optical Manufacturing and Testing Technologies: Advanced Optical Manufacturing Technologies
Li Yang; Yoshiharu Namba; David D. Walker; Shengyi Li, Editor(s)

© SPIE. Terms of Use
Back to Top