Share Email Print

Proceedings Paper

Thermal effects and upconversion in the Er3+:YAG solid-state heat-capacity laser
Author(s): Marc Eichhorn
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Although seen as nearly being impossible to realize, a quasi-three-level laser medium can be used in heat-capacity operation. In this operation mode, the laser medium is not cooled during lasing in order to avoid strong thermal lensing, which, in actively cooled operation, would result in a low beam quality or would even destabilize the laser cavity. Thus, in heat-capacity mode, the laser medium will substantially heat up during operation, which will cause an increase in re-absorption for a quasi-three-level laser medium, resulting in a general drop in output power over time. However, laser power, temperature rise, fluorescence and inversion are coupled by the temperaturedependent spectroscopic properties of the laser medium in a complex way. This paper presents an investigation on these thermal effects and upconversion in the resonantly pumped Er3+:YAG solid-state heat-capacity laser (SSHCL) system. These effects are important for the scaling properties on this laser towards medium- or high-energy systems, and to obtain a good beam quality from the laser itself. It is shown that the expected power drop of this quasi-three-level medium due to the rise in crystal temperature is very low, allowing for high-power operation on substantial time scales. The experimental results and the theoretical background will be explained in detail. The effect of fluorescence re-absorption on the laser properties, especially on threshold and laser efficiency will also be discussed. This fluorescence re-pumping, applicable in general to a large variety of lasers, can drastically increase the output power and thus laser efficiency at a given pump power. Up to 125 W and 89 J in 2 s are achieved using optimized doping levels for upconversion reduction.

Paper Details

Date Published: 12 October 2010
PDF: 12 pages
Proc. SPIE 7836, Technologies for Optical Countermeasures VII, 783608 (12 October 2010); doi: 10.1117/12.864433
Show Author Affiliations
Marc Eichhorn, Institut Franco-Allemand de Recherches de Saint-Louis (France)

Published in SPIE Proceedings Vol. 7836:
Technologies for Optical Countermeasures VII
David H. Titterton; Mark A. Richardson, Editor(s)

© SPIE. Terms of Use
Back to Top