Share Email Print
cover

Proceedings Paper

Research on VCSEL of single-mode multilayer photonic crystal
Author(s): Wenchao Li; Zhengjun Liu; Xiaopeng Sha
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Vertical-Cavity Surface-Emitting Lasers (VCSEL) of single mode have the potential advantage in the domains of optical information network, routing interactions, optical information storage and data transmission for their excellent performance. However, operating on the single-mode model in the whole pumped area is not solved, which impacts the technologies and applications. In this paper, a new research on VCSEL of single mode multilayer photonic crystal is presented. In the structure of photonic crystal, defects in the horizontal direction are provided by the micro-cavity, while the AIR-KTP interface on the top and the KTP-DBR (Distributed Bragg Reflection) interface at the bottom of cavity provide the defects in the vertical direction, which form quantum defects of electron-hole pairs. The PC-VCSEL in the paper has excellent mode-selection characteristics, which can operate continuously at 850nm in single mode. The single-mode suppression ratio (SMSR) of 45dB is obtained in a wide dynamic range. The PC-VCSEL is expected to become a high-power single-mode light in the future.

Paper Details

Date Published: 22 October 2010
PDF: 5 pages
Proc. SPIE 7657, 5th International Symposium on Advanced Optical Manufacturing and Testing Technologies: Design, Manufacturing, and Testing of Micro- and Nano-Optical Devices and Systems, 76570O (22 October 2010); doi: 10.1117/12.864113
Show Author Affiliations
Wenchao Li, Hebei Univ. of Technology (China)
Qinhuangdao College of Profession Technology (China)
Zhengjun Liu, Yanshan Univ. (China)
Xiaopeng Sha, Yanshan Univ. (China)


Published in SPIE Proceedings Vol. 7657:
5th International Symposium on Advanced Optical Manufacturing and Testing Technologies: Design, Manufacturing, and Testing of Micro- and Nano-Optical Devices and Systems
Tianchun Ye; Sen Han; Masaomi Kameyama; Song Hu, Editor(s)

© SPIE. Terms of Use
Back to Top