Share Email Print
cover

Proceedings Paper

Research on Doppler frequency in incoherent FM/CW laser detection
Author(s): Kai Liu; Zhanzhong Cui
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

The principle of transmitted and received laser in incoherent FM/CW laser detection is different from the one in coherent FM/CW laser detection. The methods for distance solution in both detections are similar. Incoherent FM/CW laser detection uses subcarrier to modulate the intensity of laser, and the photodetector detects the intensity of received signal. The amplified photocurrent is mixed with local oscillator signal, and the intermediate frequency (IF) signal contains the information of distance from sensor to target. The Doppler frequency for this detection is related with the relative radial velocity between sensor and target. The optical frequency is directly modulated with electro-optic device in coherent FM/CW laser detection and the received laser signal is photomixed with transmitted laser signal. The Doppler frequency in the detection relates to the optical frequency. In distance-measuring lidar, the Doppler frequency affects the solution. The Doppler frequency in incoherent FM/CW laser detection is unrelated with optical frequency, and it is much less than the one in coherent FM/CW laser detection, correspondingly. The error in incoherent FM/CW laser detection is smaller. As a result, the incoherent FM/CW laser detection is more suitable for the use of distance-measuring lidar.

Paper Details

Date Published: 11 October 2010
PDF: 6 pages
Proc. SPIE 7656, 5th International Symposium on Advanced Optical Manufacturing and Testing Technologies: Optical Test and Measurement Technology and Equipment, 765618 (11 October 2010); doi: 10.1117/12.863721
Show Author Affiliations
Kai Liu, Beijing Institute of Technology (China)
Zhanzhong Cui, Beijing Institute of Technology (China)


Published in SPIE Proceedings Vol. 7656:
5th International Symposium on Advanced Optical Manufacturing and Testing Technologies: Optical Test and Measurement Technology and Equipment
Yudong Zhang; Jose M. Sasian; Libin Xiang; Sandy To, Editor(s)

© SPIE. Terms of Use
Back to Top