Share Email Print

Proceedings Paper

Advanced end-to-end fiber optic sensing systems for demanding environments
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Optical fibers are small-in-diameter, light-in-weight, electromagnetic-interference immune, electrically passive, chemically inert, flexible, embeddable into different materials, and distributed-sensing enabling, and can be temperature and radiation tolerant. With appropriate processing and/or packaging, they can be very robust and well suited to demanding environments. In this paper, we review a range of complete end-to-end fiber optic sensor systems that IFOS has developed comprising not only (1) packaged sensors and mechanisms for integration with demanding environments, but (2) ruggedized sensor interrogators, and (3) intelligent decision aid algorithms software systems. We examine the following examples: • Fiber Bragg Grating (FBG) optical sensors systems supporting arrays of environmentally conditioned multiplexed FBG point sensors on single or multiple optical fibers: In conjunction with advanced signal processing, decision aid algorithms and reasoners, FBG sensor based structural health monitoring (SHM) systems are expected to play an increasing role in extending the life and reducing costs of new generations of aerospace systems. Further, FBG based structural state sensing systems have the potential to considerably enhance the performance of dynamic structures interacting with their environment (including jet aircraft, unmanned aerial vehicles (UAVs), and medical or extravehicular space robots). • Raman based distributed temperature sensing systems: The complete length of optical fiber acts as a very long distributed sensor which may be placed down an oil well or wrapped around a cryogenic tank.

Paper Details

Date Published: 15 September 2010
PDF: 9 pages
Proc. SPIE 7817, Nanophotonics and Macrophotonics for Space Environments IV, 78170L (15 September 2010); doi: 10.1117/12.862227
Show Author Affiliations
Richard J. Black, IFOS (United States)
Behzad Moslehi, IFOS (United States)

Published in SPIE Proceedings Vol. 7817:
Nanophotonics and Macrophotonics for Space Environments IV
Edward W. Taylor; David A. Cardimona, Editor(s)

© SPIE. Terms of Use
Back to Top