Share Email Print
cover

Proceedings Paper

Future VIIRS enhancements for the integrated polar-orbiting environmental satellite system
Author(s): Jeffery J. Puschell; John Silny; Lacy Cook; Eugene Kim
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

The Visible/Infrared Imager Radiometer Suite (VIIRS) is the next-generation imaging spectroradiometer for the future operational polar-orbiting environmental satellite system. A successful Flight Unit 1 has been delivered and integrated onto the NPP spacecraft. The flexible VIIRS architecture can be adapted and enhanced to respond to a wide range of requirements and to incorporate new technology as it becomes available. This paper reports on recent design studies to evaluate building a MW-VLWIR dispersive hyperspectral module with active cooling into the existing VIIRS architecture. Performance of a two-grating VIIRS hyperspectral module was studied across a broad trade space defined primarily by spatial sampling, spectral range, spectral sampling interval, along-track field of view and integration time. The hyperspectral module studied here provides contiguous coverage across 3.9 - 15.5 μm with a spectral sampling interval of 10 nm or better, thereby extending VIIRS spectral range to the shortwave side of the 15.5 μm CO2 band and encompassing the 6.7 μm H2O band. Spatial sampling occurs at VIIRS I-band (~0.4 km at nadir) spatial resolution with aggregation to M-band (~0.8 km) and larger pixel sizes to improve sensitivity. Radiometric sensitivity (NEdT) at a spatial resolution of ~4 km is ~0.1 K or better for a 250 K scene across a wavelength range of 4.5 μm to 15.5 μm. The large number of high spectral and spatial resolution FOVs in this instrument improves chances for retrievals of information on the physical state and composition of the atmosphere all the way to the surface in cloudy regions relative to current systems. Spectral aggregation of spatial resolution measurements to MODIS and VIIRS multispectral bands would continue legacy measurements with better sensitivity in nearly all bands. Additional work is needed to optimize spatial sampling, spectral range and spectral sampling approaches for the hyperspectral module and to further refine this powerful imager concept.

Paper Details

Date Published: 26 August 2010
PDF: 14 pages
Proc. SPIE 7813, Remote Sensing System Engineering III, 78130B (26 August 2010); doi: 10.1117/12.862075
Show Author Affiliations
Jeffery J. Puschell, Raytheon Space & Airborne Systems (United States)
John Silny, Raytheon Space & Airborne Systems (United States)
Lacy Cook, Raytheon Space & Airborne Systems (United States)
Eugene Kim, Raytheon Space & Airborne Systems (United States)


Published in SPIE Proceedings Vol. 7813:
Remote Sensing System Engineering III
Philip E. Ardanuy; Jeffery J. Puschell, Editor(s)

© SPIE. Terms of Use
Back to Top