Share Email Print
cover

Proceedings Paper

Accelerated indoor durability testing of polymeric photovoltaic encapsulation materials
Author(s): Gernot Oreski
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

The aim of these investigations was to determine the influence of the relevant load parameters temperature and humidity on the degradation behavior of selected polymeric PV encapsulation materials. A test program concerning three accelerated artificial ageing tests was set up and a comprehensive study of the selected candidate materials and its degradation behavior was done. To assess the long term performance and durability of materials, it was necessary not only to measure the deterioration of macroscopic physical properties, but also to gain information about degradation processes taking place at a molecular level. Therefore, the material properties and the aging behaviour were characterized by infrared spectroscopy, by UV/VIS spectroscopy, by differential scanning calorimetry, by dynamical mechanical analysis and by tensile tests. By IR spectroscopy no significant thermal oxidation was detected for all investigated materials. But UV/VIS spectroscopy showed a significant drop in solar transmittance and reflectance values. Yellowing was observed due to the formation of chromophoric degradation products. For all materials a significant decrease in ultimate mechanical properties due to chemical aging was measured. For both backsheet materials the changes in ultimate mechanical properties can be attributed nearly exclusiveley to the polyester layer. On the other hand, a stiffening of all materials due to physical aging was observed within the first 1000h of damp heat testing. For the backsheet laminates, delamination at the edges was observed. Generally, higher temperature levels during exposure induced faster rate of chemical and physical aging. High humidity levels showed to be less influential on polymer degradation than temperature.

Paper Details

Date Published: 19 August 2010
PDF: 11 pages
Proc. SPIE 7773, Reliability of Photovoltaic Cells, Modules, Components, and Systems III, 77730D (19 August 2010); doi: 10.1117/12.860390
Show Author Affiliations
Gernot Oreski, Polymer Competence Ctr. Leoben GmbH (Austria)


Published in SPIE Proceedings Vol. 7773:
Reliability of Photovoltaic Cells, Modules, Components, and Systems III
Neelkanth G. Dhere; John H. Wohlgemuth; Kevin Lynn, Editor(s)

© SPIE. Terms of Use
Back to Top