Share Email Print
cover

Proceedings Paper

A high-accuracy blackbody for CLARREO
Author(s): Harri Latvakoski; Mike Watson; Shane Topham; Deron Scott; Mike Wojcik; Gail Bingham
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The NASA climate science mission Climate Absolute Radiance and Refractivity Observatory (CLARREO), which is to measure Earth's emitted spectral radiance from orbit for 5 years, has an absolute accuracy requirement of 0.1 K (3σ) at 220 K over most of the thermal infrared. To meet this requirement, CLARREO needs highly accurate on-board blackbodies which remain accurate over the life of the mission. Space Dynamics Laboratory is developing a prototype blackbody that demonstrates the ability to meet the needs of CLARREO. This prototype is based on a blackbody design currently in use, which is relatively simple to build, was developed for use on the ground or on-orbit, and is readily scalable for aperture size and required performance. We expect the CLARREO prototype to have emissivity of ~0.9999 from 1.5 to 50 μm, temperature uncertainties of ~25 mK (3σ), and radiance uncertainties of ~10 mK due to temperature gradients. The high emissivity and low thermal gradient uncertainties are achieved through cavity design, while the SItraceable temperature uncertainty is attained through the use of phase change materials (mercury, gallium, and water) in the blackbody. Blackbody temperature sensor calibration is maintained over time by comparing sensor readings to the known melt temperatures of these materials, which are observed by heating through their melt points. Since blackbody emissivity can potentially change over time due to changes in surface emissivity (especially for an on-orbit blackbody) an on-board means of detecting emissivity change is desired. The prototype blackbody will include an emissivity monitor based on a quantum cascade laser to demonstrate the concept.

Paper Details

Date Published: 27 August 2010
PDF: 12 pages
Proc. SPIE 7808, Infrared Remote Sensing and Instrumentation XVIII, 78080X (27 August 2010); doi: 10.1117/12.859477
Show Author Affiliations
Harri Latvakoski, Utah State Univ. (United States)
Mike Watson, Utah State Univ. (United States)
Shane Topham, Utah State Univ. (United States)
Deron Scott, Utah State Univ. (United States)
Mike Wojcik, Utah State Univ. (United States)
Gail Bingham, Utah State Univ. (United States)


Published in SPIE Proceedings Vol. 7808:
Infrared Remote Sensing and Instrumentation XVIII
Marija Strojnik; Gonzalo Paez, Editor(s)

© SPIE. Terms of Use
Back to Top