Share Email Print

Proceedings Paper

Three-dimensional piezoelasticity solution for piezolaminated angle-ply cylindrical shells featuring imperfect interfacial bonding
Author(s): S. Kapuria; Amit Kumar
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

The work presents an analytical three-dimensional solution for simply supported angle-ply piezoelectric (hybrid) laminated cylindrical shells in cylindrical bending with interlaminar bonding imperfections, in an electro-thermomechanical loading environment. The jumps in displacements, electric potential and temperature at the imperfect interfaces are modeled using linear spring-layer model. The solution includes the case when, besides at inner and outer surfaces, electric potentials are prescribed at layer interfaces also for effective actuation/sensing. The entities for each layer are expanded in Fourier series in circumferential coordinate to satisfy the boundary conditions at the simply supported ends. The resulting ordinary differential equations in thickness coordinate with variable coefficients are solved by the modified Frobenius method. Numerical results are presented for hybrid composite and sandwich shells with varying imperfection compliance. The effect of location of imperfect interface on the response is studied for cross-ply panels while the effect of ply angle on the sensitivity towards imperfection is studied for angle-ply panels. The effect of weak bonding at actuator/sensor interface on the actuation/sensing authority is investigated. The presented results would also help assessing 2D shell theories that incorporate interlaminar bonding imperfections.

Paper Details

Date Published: 30 March 2010
PDF: 12 pages
Proc. SPIE 7644, Behavior and Mechanics of Multifunctional Materials and Composites 2010, 76441Z (30 March 2010); doi: 10.1117/12.859302
Show Author Affiliations
S. Kapuria, Stanford Univ. (United States)
Amit Kumar, Indian Institute of Technology Delhi (India)

Published in SPIE Proceedings Vol. 7644:
Behavior and Mechanics of Multifunctional Materials and Composites 2010
Zoubeida Ounaies; Jiangyu Li, Editor(s)

© SPIE. Terms of Use
Back to Top