Share Email Print
cover

Proceedings Paper

TiO2 dye sensitized solar cell (DSSC): linear relationship of maximum power point and anthocyanin concentration
Author(s): Radin Ahmadian
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

This study investigated the relationship of anthocyanin concentration from different organic fruit species and output voltage and current in a TiO2 dye-sensitized solar cell (DSSC) and hypothesized that fruits with greater anthocyanin concentration produce higher maximum power point (MPP) which would lead to higher current and voltage. Anthocyanin dye solution was made with crushing of a group of fresh fruits with different anthocyanin content in 2 mL of de-ionized water and filtration. Using these test fruit dyes, multiple DSSCs were assembled such that light enters through the TiO2 side of the cell. The full current-voltage (I-V) co-variations were measured using a 500 Ω potentiometer as a variable load. Point-by point current and voltage data pairs were measured at various incremental resistance values. The maximum power point (MPP) generated by the solar cell was defined as a dependent variable and the anthocyanin concentration in the fruit used in the DSSC as the independent variable. A regression model was used to investigate the linear relationship between study variables. Regression analysis showed a significant linear relationship between MPP and anthocyanin concentration with a p-value of 0.007. Fruits like blueberry and black raspberry with the highest anthocyanin content generated higher MPP. In a DSSC, a linear model may predict MPP based on the anthocyanin concentration. This model is the first step to find organic anthocyanin sources in the nature with the highest dye concentration to generate energy.

Paper Details

Date Published: 8 September 2010
PDF: 6 pages
Proc. SPIE 7771, Thin Film Solar Technology II, 77710H (8 September 2010); doi: 10.1117/12.859266
Show Author Affiliations
Radin Ahmadian, Hunter College High School (United States)


Published in SPIE Proceedings Vol. 7771:
Thin Film Solar Technology II
Alan E. Delahoy; Louay A. Eldada, Editor(s)

© SPIE. Terms of Use
Back to Top