Share Email Print
cover

Proceedings Paper

Euclid imaging channels: from science to system requirements
Author(s): J. Amiaux; J. L. Auguères; O. Boulade; C. Cara; S. Paulin-Henriksson; A. Réfrégier; S. Ronayette; A. Amara; A. Glauser; C. Dumesnil; A. M. Di Giorgio; J. Booth; M. Schweitzer; R. Holmes; M. Cropper; E. Atad-Ettedgui; L. Duvet; D. Lumb
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Euclid is an ESA Cosmic Vision wide-field space mission concept dedicated to the high-precision study of Dark Energy and Dark Matter. The mission relies on two primary cosmological probes: Weak gravitational Lensing (WL) and Baryon Acoustic Oscillations (BAO). The first probe requires the measurement of the shape and photometric redshifts of distant galaxies. The second probe is based on the 3-dimensional distribution of galaxies through spectroscopic redshifts. Additional cosmological probes are also used and include cluster counts, redshift space distortions, the integrated Sachs-Wolfe effect (ISW) and galaxy clustering, which can all be derived from a combination of imaging and spectroscopy. Euclid Imaging Channels Instrument of the Euclid mission is designed to study the weak gravitational lensing cosmological probe. The combined Visible and Near InfraRed imaging channels form the basis of the weak lensing measurements. The VIS channel provides high-precision galaxy shape measurements for the measurement of weak lensing shear. The NIP channel provides the deep NIR multi-band photometry necessary to derive the photometric redshifts and thus a distance estimate for the lensed galaxies. This paper describes the Imaging Channels design driver requirements to reach the challenging science goals and the design that has been studied during the Cosmic Vision Assessment Phase.

Paper Details

Date Published: 6 August 2010
PDF: 12 pages
Proc. SPIE 7731, Space Telescopes and Instrumentation 2010: Optical, Infrared, and Millimeter Wave, 77311I (6 August 2010); doi: 10.1117/12.857030
Show Author Affiliations
J. Amiaux, Service d'Astrophysique, CEA (France)
J. L. Auguères, Service d'Astrophysique, CEA (France)
O. Boulade, Service d'Astrophysique, CEA (France)
C. Cara, Service d'Astrophysique, CEA (France)
S. Paulin-Henriksson, Service d'Astrophysique, CEA (France)
A. Réfrégier, Service d'Astrophysique, CEA (France)
S. Ronayette, Service d'Astrophysique, CEA (France)
A. Amara, ETH Zurich (Switzerland)
A. Glauser, ETH Zurich (Switzerland)
UK Astronomy Technology Ctr. (United Kingdom)
C. Dumesnil, Institut d'Astrophysique Spatiale, CNRS, Univ. Paris-Sud 11 (France)
A. M. Di Giorgio, INAF, Istituto di Fisica dello Spazio Interplanetario (Italy)
J. Booth, Jet Propulsion Lab. (United States)
M. Schweitzer, Max-Planck-Institut für extraterrestrische Physik (Germany)
R. Holmes, Max-Planck-Institut für Astronomie (Germany)
M. Cropper, Mullard Space Science Lab., Univ. College London (United Kingdom)
E. Atad-Ettedgui, UK Astronomy Technology Ctr. (United Kingdom)
L. Duvet, European Space Research and Technology Ctr. (Netherlands)
D. Lumb, European Space Research and Technology Ctr. (Netherlands)


Published in SPIE Proceedings Vol. 7731:
Space Telescopes and Instrumentation 2010: Optical, Infrared, and Millimeter Wave
Jacobus M. Oschmann; Mark C. Clampin; Howard A. MacEwen, Editor(s)

© SPIE. Terms of Use
Back to Top