Share Email Print
cover

Proceedings Paper

Interferometric test method for testing convex aspheric mirror surfaces
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

An interferometric null Test Method is described for testing convex aspheric surfaces, such as found in secondary mirrors of Cassegrain telescopes or variations thereof such as Mersenne and Ritchey-Chrétien. A family of test designs is described covering a wide range of mirror diameters, radii of curvature, and aspheric shapes as described by conic constants and/or polynomials. The Test Method has been used successfully for testing the convex hyperboloid surface of the 244-mm diameter secondary mirror of the NASA 3-meter IRTF telescope. The Test Method is currently being used to test the 120-mm diameter, convex paraboloid secondary mirrors of the Magdalena Ridge Observatory Interferometer (MROI). Test designs exist on paper for both Keck secondary mirrors (0.53-m and 1.4-m diameter), the HST secondary (0.3-meter diameter), and secondary mirrors of some of the extremely large telescopes of the future, such as the TMT secondary (3.2-m diameter). In typical test embodiments, the simplicity of the Test enables rapid implementation at a fraction of the cost of comparable Hindle-Sphere or Hindle-Simpson tests.

Paper Details

Date Published: 19 July 2010
PDF: 7 pages
Proc. SPIE 7739, Modern Technologies in Space- and Ground-based Telescopes and Instrumentation, 77390Y (19 July 2010); doi: 10.1117/12.856564
Show Author Affiliations
T. Stewart McKechnie, McKechnie Optics Research (United States)


Published in SPIE Proceedings Vol. 7739:
Modern Technologies in Space- and Ground-based Telescopes and Instrumentation
Eli Atad-Ettedgui; Dietrich Lemke, Editor(s)

© SPIE. Terms of Use
Back to Top