Share Email Print
cover

Proceedings Paper

On-orbit dynamics and controls system architecture for SIM Lite
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The dynamic stability of white light fringes formed on the guide and science interferometers in SIM-Lite along with the pointing stability of each arm of each interferometer affect the visibility of fringes and the length of the fringe camera integration time for the observatory. Hence, tight fringe and pointing stability requirements are needed to reduce science interferometer camera integration times, which in turn help increase the all important instrument's observing efficiency. The SIM-Lite Instrument Dynamics and Controls (D&C) System Architecture deals with such dynamic issues through a "tailored" system dynamics design complemented by a comprehensive active control system. The SIM-Lite on-orbit System architecture is described in this paper. Key roles played by the resulting D&C System are also established, while the system design is clearly linked to the four nominal phases of on-orbit operations for the observatory (Tile to Tile slew & settling, guide star acquisition, science observation, & science interferometer retargeting). Top driving requirements dictating system interferometric-baseline stability and repeatability, instrument pointing stability, and fringe stability are discussed here together with the resulting high level Error Budget. Key system sensitivities and currently known D&C related design challenges are also discussed.

Paper Details

Date Published: 21 July 2010
PDF: 14 pages
Proc. SPIE 7734, Optical and Infrared Interferometry II, 77341I (21 July 2010); doi: 10.1117/12.856505
Show Author Affiliations
Oscar S. Alvarez-Salazar, Jet Propulsion Lab. (United States)


Published in SPIE Proceedings Vol. 7734:
Optical and Infrared Interferometry II
William C. Danchi; Françoise Delplancke; Jayadev K. Rajagopal, Editor(s)

© SPIE. Terms of Use
Back to Top