Share Email Print
cover

Proceedings Paper

Content-based audio authentication using a hierarchical patchwork watermark embedding
Author(s): Michael Gulbis; Erika Müller
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Content-based audio authentication watermarking techniques extract perceptual relevant audio features, which are robustly embedded into the audio file to protect. Manipulations of the audio file are detected on the basis of changes between the original embedded feature information and the anew extracted features during verification. The main challenges of content-based watermarking are on the one hand the identification of a suitable audio feature to distinguish between content preserving and malicious manipulations. On the other hand the development of a watermark, which is robust against content preserving modifications and able to carry the whole authentication information. The payload requirements are significantly higher compared to transaction watermarking or copyright protection. Finally, the watermark embedding should not influence the feature extraction to avoid false alarms. Current systems still lack a sufficient alignment of watermarking algorithm and feature extraction. In previous work we developed a content-based audio authentication watermarking approach. The feature is based on changes in DCT domain over time. A patchwork algorithm based watermark was used to embed multiple one bit watermarks. The embedding process uses the feature domain without inflicting distortions to the feature. The watermark payload is limited by the feature extraction, more precisely the critical bands. The payload is inverse proportional to segment duration of the audio file segmentation. Transparency behavior was analyzed in dependence of segment size and thus the watermark payload. At a segment duration of about 20 ms the transparency shows an optimum (measured in units of Objective Difference Grade). Transparency and/or robustness are fast decreased for working points beyond this area. Therefore, these working points are unsuitable to gain further payload, needed for the embedding of the whole authentication information. In this paper we present a hierarchical extension of the watermark method to overcome the limitations given by the feature extraction. The approach is a recursive application of the patchwork algorithm onto its own patches, with a modified patch selection to ensure a better signal to noise ratio for the watermark embedding. The robustness evaluation was done by compression (mp3, ogg, aac), normalization, and several attacks of the stirmark benchmark for audio suite. Compared on the base of same payload and transparency the hierarchical approach shows improved robustness.

Paper Details

Date Published: 5 May 2010
PDF: 12 pages
Proc. SPIE 7723, Optics, Photonics, and Digital Technologies for Multimedia Applications, 77230N (5 May 2010); doi: 10.1117/12.855623
Show Author Affiliations
Michael Gulbis, Univ. Rostock (Germany)
Erika Müller, Univ. Rostock (Germany)


Published in SPIE Proceedings Vol. 7723:
Optics, Photonics, and Digital Technologies for Multimedia Applications
Peter Schelkens; Touradj Ebrahimi; Gabriel Cristóbal; Frédéric Truchetet; Pasi Saarikko, Editor(s)

© SPIE. Terms of Use
Back to Top