Share Email Print
cover

Proceedings Paper

Optical coherent sensor for monitoring and measurement of engineering structures
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Among many coherent optical methods one should distinguished Grating Interferometry (GI) which allows accurate in-plane displacement measurements and Digital Speckle Pattern Interferometry (DSPI) used for in-plane and out-of-plane measurements. Development of sensors based on both methods mentioned above as complementary ones will provide user universal group of sensors from which depending on measurement requirements such as measuring range, object surface profile and measurement conditions the most appropriate can be chosen. In-plane displacement measurements are of interested of different branches of industry - from micro (i.e.: characterization of MEMS or MOEMS) to civil engineering (i.e.: Structural Health Monitoring systems). In the paper the new optical coherent sensor for in-plane displacement and strain measurements is presented. The sensor combines GI and DSPI methods in one device which can be used for testing of objects with different types of surfaces. GI requires the specimen grating attached at the surface but provides very good measurement accuracy however DSPI can be applied for testing of objects with rough surfaces but due to higher noise gives lower accuracy. The sensor can work in three modes: as GI only, DSPI only and both GI and DSPI simultaneously. The third mode can by useful when the specimen grating is attached on the part of object under test only. In the paper the theoretical background of the sensor is presented. For confirmation of GI/DSPI sensor possibilities the specially designed demonstrator is described and the exemplary results obtained during its laboratory tests are shown. Successful application of proposed sensor is possible due to its miniaturization, simplicity of operation by user (compact structure and automation of measurement procedure) and low cost. The last mentioned condition will be possible due to low cost replication techniques with usage of silicon technology.

Paper Details

Date Published: 14 May 2010
PDF: 7 pages
Proc. SPIE 7718, Optical Micro- and Nanometrology III, 77181G (14 May 2010); doi: 10.1117/12.854868
Show Author Affiliations
Dariusz Łukaszewski, Warsaw Univ. of Technology (Poland)
Leszek Sałbut, Warsaw Univ. of Technology (Poland)
Jan A. Dziuban, Wroclaw Univ. of Technology (Poland)


Published in SPIE Proceedings Vol. 7718:
Optical Micro- and Nanometrology III
Christophe Gorecki; Anand Krishna Asundi; Wolfgang Osten, Editor(s)

© SPIE. Terms of Use
Back to Top