Share Email Print

Proceedings Paper

Optical bistable switching with Kerr nonlinear materials exhibiting a finite response time in two-dimensional photonic crystals
Author(s): Ali Naqavi; Zahra MonemHaghdoost; Hooman Abediasl; Sina Khorasani; Khashayar Mehrany
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Effect of relaxation time on the performance of photonic crystal optical bistable switches based on Kerr nolinearity is discussed. This paper deals with optical pulses with the duration of about 50 ps. In such cases the steady state response of the optical device can be used to approximate the pulse evolution if the nonlinearity is assumed instantaneous, hence analytical solutions such as the coupled mode theory can be used to obtain the time evolution of the electromagnetic fields. However if the relaxation time of the material nonlinear response is also considered, changes in the power levels and in the shape of the hystersis loop is observed. In this case, we use the nonlinear finite difference time domain method (NL-FDTD) to follow the system dynamics and get the bistability hystersis loop. Codes are developed to analyze the instantaneous Kerr materials and the Kerr materials with finite response times. Depending on the material, the relaxation times of the order of 1-10fs should be considered in studying bistability to obtain the right shape of the output pulses. It is observed that the relaxation leads to larger input power and threshold and hence degrades the performance of the switch in pulse shaping.

Paper Details

Date Published: 14 May 2010
PDF: 6 pages
Proc. SPIE 7713, Photonic Crystal Materials and Devices IX, 77131T (14 May 2010); doi: 10.1117/12.854620
Show Author Affiliations
Ali Naqavi, Ecole Polytechnique Fédérale de Lausanne (Switzerland)
Zahra MonemHaghdoost, Sharif Univ. of Technology (Iran, Islamic Republic of)
Hooman Abediasl, GLSE Institute of Technology (United States)
Sina Khorasani, Sharif Univ. of Technology (Iran, Islamic Republic of)
Khashayar Mehrany, Sharif Univ. of Technology (Iran, Islamic Republic of)

Published in SPIE Proceedings Vol. 7713:
Photonic Crystal Materials and Devices IX
Hernán R. Míguez; Sergei G. Romanov; Lucio Claudio Andreani; Christian Seassal, Editor(s)

© SPIE. Terms of Use
Back to Top