Share Email Print
cover

Proceedings Paper

Theory of second-harmonic generation in silica nanowires
Author(s): Jesper Laegsgaard
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The possibility of second-harmonic generation based on surface dipole and bulk multipole nonlinearities in silica nanowires is investigated numerically. Both circular and microstructured nanowires are considered. Phase matching is provided by propagating the pump field in the fundamental mode, while generating the second harmonic in one of the modes of the LP11 multiplet. This is shown to work in both circular and microstructured nanowires, although only one of the LP11 modes can be phase-matched in the microstructure. The prospect of obtaining large conversion efficiencies in silica-based nanowires is critically discussed, based on simulations of second-harmonic generation in nanowires with a fluctuating phase-matching wavelength. It is concluded that efficient wavelength conversion will either require strong improvements in the nanowire uniformity, or an increase of the second-order nonlinearity by at least an order of magnitude by use of a different base material, or highly polarizable surface coatings.

Paper Details

Date Published: 14 May 2010
PDF: 11 pages
Proc. SPIE 7714, Photonic Crystal Fibers IV, 77140H (14 May 2010); doi: 10.1117/12.854139
Show Author Affiliations
Jesper Laegsgaard, Technical Univ. of Denmark (Denmark)


Published in SPIE Proceedings Vol. 7714:
Photonic Crystal Fibers IV
Kyriacos Kalli; Waclaw Urbanczyk, Editor(s)

© SPIE. Terms of Use
Back to Top