Share Email Print
cover

Proceedings Paper

BATMAV: a 2-DOF bio-inspired flapping flight platform
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Due to the availability of small sensors, Micro-Aerial Vehicles (MAVs) can be used for detection missions of biological, chemical and nuclear agents. Traditionally these devices used fixed or rotary wings, actuated with electric DC motortransmission, a system which brings the disadvantage of a heavier platform. The overall objective of the BATMAV project is to develop a biologically inspired bat-like MAV with flexible and foldable wings for flapping flight. This paper presents a flight platform that features bat-inspired wings which are able to actively fold their elbow joints. A previous analysis of the flight physics for small birds, bats and large insects, revealed that the mammalian flight anatomy represents a suitable flight platform that can be actuated efficiently using Shape Memory Alloy (SMA) artificial-muscles. A previous study of the flight styles in bats based on the data collected by Norberg [1] helped to identify the required joint angles as relevant degrees of freedom for wing actuation. Using the engineering theory of robotic manipulators, engineering kinematic models of wings with 2 and 3-DOFs were designed to mimic the wing trajectories of the natural flier Plecotus auritus. Solid models of the bat-like skeleton were designed based on the linear and angular dimensions resulted from the kinematic models. This structure of the flight platform was fabricated using rapid prototyping technologies and assembled to form a desktop prototype with 2-DOFs wings. Preliminary flapping test showed suitable trajectories for wrist and wingtip that mimic the flapping cycle of the natural flyer.

Paper Details

Date Published: 12 April 2010
PDF: 11 pages
Proc. SPIE 7643, Active and Passive Smart Structures and Integrated Systems 2010, 76433B (12 April 2010); doi: 10.1117/12.853398
Show Author Affiliations
Gheorghe Bunget, North Carolina State Univ. (United States)
Stefan Seelecke, North Carolina State Univ. (United States)


Published in SPIE Proceedings Vol. 7643:
Active and Passive Smart Structures and Integrated Systems 2010
Mehrdad N. Ghasemi-Nejhad, Editor(s)

© SPIE. Terms of Use
Back to Top