Share Email Print
cover

Proceedings Paper

Limitations of Geiger-mode arrays for Flash LADAR applications
Author(s): George M. Williams
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

It is shown through physics-based Monte Carlo simulations of avalanche photodiode (APD) LADAR receivers that under typical operating scenarios, Geiger-mode APD (GmAPD) flash LADAR receivers may often be ineffective. These results are corroborated by analysis of the signal photon detection efficiency and signal-to-noise ratio metrics. Due to their ability to detect only one pulse per laser shot, the target detection efficiency of GmAPD receivers, as measured by target signal events detected compared to those present at the receiver's optical aperture, is shown to be highly particular and respond nonlinearly to the specific LADAR conditions including range, laser power, detector efficiency, and target occlusion, which causes the GmAPD target detection capabilities to vary unpredictably over standard mission conditions. In the detection of partially occluded targets, GmAPD LADAR receivers perform optimally within only a narrow operating window of range, detector efficiency, and laser power; outside this window performance degrades sharply. Operating at both short and long standoff ranges, GmAPD receivers most often cannot detect partially occluded targets, and with an increased number of detector dark noise events, e.g. resulting from exposure to ionizing radiation, the probability that a GmAPD device is armed and able to detect target signal returns approaches zero. Even when multiple pulses are accumulated or contrived operational scenarios are employed, and even in weak-signal scenarios, GmAPDs most often perform inefficiently in their detection of target signal events at the aperture. It is concluded that the inability of the GmAPD to detect target signal present at the receiver's aperture may lead to a loss of operational capability, may have undesired implications for the equivalent optical aperture, laser power, and/or system complexity, and may incur other costs deleterious to operational efficacy.

Paper Details

Date Published: 4 May 2010
PDF: 19 pages
Proc. SPIE 7684, Laser Radar Technology and Applications XV, 768414 (4 May 2010); doi: 10.1117/12.853382
Show Author Affiliations
George M. Williams, Voxtel, Inc. (United States)


Published in SPIE Proceedings Vol. 7684:
Laser Radar Technology and Applications XV
Monte D. Turner; Gary W. Kamerman, Editor(s)

© SPIE. Terms of Use
Back to Top