Share Email Print
cover

Proceedings Paper

An accurate evaluation of the performance of asynchronous DS-CDMA systems with zero-correlation-zone coding in Rayleigh fading
Author(s): Ernest Walker; Xinjia Chen; Reginald L. Cooper
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

An arbitrarily accurate approach is used to determine the bit-error rate (BER) performance for generalized asynchronous DS-CDMA systems, in Gaussian noise with Raleigh fading. In this paper, and the sequel, new theoretical work has been contributed which substantially enhances existing performance analysis formulations. Major contributions include: substantial computational complexity reduction, including a priori BER accuracy bounding; an analytical approach that facilitates performance evaluation for systems with arbitrary spectral spreading distributions, with non-uniform transmission delay distributions. Using prior results, augmented by these enhancements, a generalized DS-CDMA system model is constructed and used to evaluated the BER performance, in a variety of scenarios. In this paper, the generalized system modeling was used to evaluate the performance of both Walsh- Hadamard (WH) and Walsh-Hadamard-seeded zero-correlation-zone (WH-ZCZ) coding. The selection of these codes was informed by the observation that WH codes contain N spectral spreading values (0 to N - 1), one for each code sequence; while WH-ZCZ codes contain only two spectral spreading values (N/2 - 1,N/2); where N is the sequence length in chips. Since these codes span the spectral spreading range for DS-CDMA coding, by invoking an induction argument, the generalization of the system model is sufficiently supported. The results in this paper, and the sequel, support the claim that an arbitrary accurate performance analysis for DS-CDMA systems can be evaluated over the full range of binary coding, with minimal computational complexity.

Paper Details

Date Published: 28 April 2010
PDF: 12 pages
Proc. SPIE 7706, Wireless Sensing, Localization, and Processing V, 77060M (28 April 2010); doi: 10.1117/12.852499
Show Author Affiliations
Ernest Walker, Southern Univ. (United States)
Xinjia Chen, Southern Univ. (United States)
Reginald L. Cooper, Southern Univ. (United States)


Published in SPIE Proceedings Vol. 7706:
Wireless Sensing, Localization, and Processing V
Sohail A. Dianat; Michael D. Zoltowski, Editor(s)

© SPIE. Terms of Use
Back to Top