Share Email Print

Proceedings Paper

Characterization of surface tension and contact angle of nanofluids
Author(s): Milad Radiom; Chun Yang; Weng Kong Chan
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

This paper investigates the effects of nanoparticles on surface tension and equilibrium contact angle of TiO2 - DI water nanofluids. Experimental measurements of surface tension by using the pendant droplet method show that the surface tension of the TiO2 - DI water nanofluids depends weakly on nanoparticle concentration; however, at higher nanoparticle concentrations the surface tension is lower. Various mechanisms are reported to explain this behavior. Experimental measurements of contact angles of the TiO2 - DI water nanofluids droplets on borosilicate glass slides exhibit strong nanoparticle dependence, and the general trend is increment of the contact angles with nanoparticle concentration. The effect from the so-called disjoining pressure due to the presence of nanoparticles within the thin nanofluid film wedge at the vicinity of the three-phase contact line is examined. However, the phenomenon is attributed to the pinning of contact line and local changes in solid-liquid interfacial tension due to the depositing of nanoparticles on adsorption sites on solid surface.

Paper Details

Date Published: 14 April 2010
PDF: 9 pages
Proc. SPIE 7522, Fourth International Conference on Experimental Mechanics, 75221D (14 April 2010); doi: 10.1117/12.851278
Show Author Affiliations
Milad Radiom, Nanyang Technological Univ. (Singapore)
Chun Yang, Nanyang Technological Univ. (Singapore)
Weng Kong Chan, Nanyang Technological Univ. (Singapore)

Published in SPIE Proceedings Vol. 7522:
Fourth International Conference on Experimental Mechanics
Chenggen Quan; Kemao Qian; Anand Krishna Asundi; Fook Siong Chau, Editor(s)

© SPIE. Terms of Use
Back to Top