Share Email Print
cover

Proceedings Paper

Damage and quality assessment in wheat by NIR hyperspectral imaging
Author(s): Stephen R. Delwiche; Moon S. Kim; Yanhong Dong
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Fusarium head blight is a fungal disease that affects the world's small grains, such as wheat and barley. Attacking the spikelets during development, the fungus causes a reduction of yield and grain of poorer processing quality. It also is a health concern because of the secondary metabolite, deoxynivalenol, which often accompanies the fungus. While chemical methods exist to measure the concentration of the mycotoxin and manual visual inspection is used to ascertain the level of Fusarium damage, research has been active in developing fast, optically based techniques that can assess this form of damage. In the current study a near-infrared (1000-1700 nm) hyperspectral image system was assembled and applied to Fusarium-damaged kernel recognition. With anticipation of an eventual multispectral imaging system design, 5 wavelengths were manually selected from a pool of 146 images as the most promising, such that when combined in pairs or triplets, Fusarium damage could be identified. We present the results of two pairs of wavelengths [(1199, 1474 nm) and (1315, 1474 nm)] whose reflectance values produced adequate separation of kernels of healthy appearance (i.e., asymptomatic condition) from kernels possessing Fusarium damage.

Paper Details

Date Published: 21 April 2010
PDF: 8 pages
Proc. SPIE 7676, Sensing for Agriculture and Food Quality and Safety II, 767607 (21 April 2010); doi: 10.1117/12.851150
Show Author Affiliations
Stephen R. Delwiche, USDA Agricultural Research Service (United States)
Moon S. Kim, USDA Agricultural Research Service (United States)
Yanhong Dong, Univ. of Minnesota (United States)


Published in SPIE Proceedings Vol. 7676:
Sensing for Agriculture and Food Quality and Safety II
Moon S. Kim; Shu-I Tu; Kaunglin Chao, Editor(s)

© SPIE. Terms of Use
Back to Top