Share Email Print
cover

Proceedings Paper

Adapting physically complete models to vehicle-based EMI array sensor data: data inversion and discrimination studies
Author(s): Fridon Shubitidze; Jonathan S. Miller; Gregory M. Schultz; Jay A. Marble
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

This paper reports vehicle based electromagnetic induction (EMI) array sensor data inversion and discrimination results. Recent field studies show that EMI arrays, such as the Minelab Single Transmitter Multiple Receiver (STMR), and the Geophex GEM-5 EMI array, provide a fast and safe way to detect subsurface metallic targets such as landmines, unexploded ordnance (UXO) and buried explosives. The array sensors are flexible and easily adaptable for a variety of ground vehicles and mobile platforms, which makes them very attractive for safe and cost effective detection operations in many applications, including but not limited to explosive ordnance disposal and humanitarian UXO and demining missions. Most state-of-the-art EMI arrays measure the vertical or full vector field, or gradient tensor fields and utilize them for real-time threat detection based on threshold analysis. Real field practice shows that the threshold-level detection has high false alarms. One way to reduce these false alarms is to use EMI numerical techniques that are capable of inverting EMI array data in real time. In this work a physically complete model, known as the normalized volume/surface magnetic sources (NV/SMS) model is adapted to the vehicle-based EMI array, such as STMR and GEM-5, data. The NV/SMS model can be considered as a generalized volume or surface dipole model, which in a special limited case coincides with an infinitesimal dipole model approach. According to the NV/SMS model, an object's response to a sensor's primary field is modeled mathematically by a set of equivalent magnetic dipoles, distributed inside the object (i.e. NVMS) or over a surface surrounding the object (i.e. NSMS). The scattered magnetic field of the NSMS is identical to that produced by a set of interacting magnetic dipoles. The amplitudes of the magnetic dipoles are normalized to the primary magnetic field, relating induced magnetic dipole polarizability and the primary magnetic field. The magnitudes of the NSMS are determined directly by minimizing the difference between measured and modeled data for any known object and any type of EMI sensor data. The EMI array data are inverted via the combined NV/SMS and differential evolution inversion method that uses a search scheme to estimate the location of the target. First, the applicability of the NV/SMS and DE algorithms to STMR and GEM-5 data sets is demonstrated by comparing the modeled data against the actual data, and finally the discrimination studies are conducted using as discrimination parameters the total NV/SMS and the principal axis of the induced magnetic polarizability tensor for each target.

Paper Details

Date Published: 29 April 2010
PDF: 9 pages
Proc. SPIE 7664, Detection and Sensing of Mines, Explosive Objects, and Obscured Targets XV, 76640A (29 April 2010); doi: 10.1117/12.850636
Show Author Affiliations
Fridon Shubitidze, Dartmouth College (United States)
Sky Research, Inc. (United States)
Jonathan S. Miller, Sky Research, Inc. (United States)
Gregory M. Schultz, Sky Research, Inc. (United States)
Jay A. Marble, U.S. Army Night Vision and Electronic Sensors Directorate (United States)


Published in SPIE Proceedings Vol. 7664:
Detection and Sensing of Mines, Explosive Objects, and Obscured Targets XV
Russell S. Harmon; John H. Holloway; J. Thomas Broach, Editor(s)

© SPIE. Terms of Use
Back to Top