Share Email Print
cover

Proceedings Paper

Optimal time and frequency domain waveform design for target detection
Author(s): Brandon Hamschin; Patrick Loughlin
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Some marine mammals as well as bats are known to emit sophisticated waveforms while searching for objects or hunting prey. Some dolphins have been observed to change their sonar pulse depending on the environment. Incorporating these strategies into sonar waveform and receiver design has become an active area of research. In this paper, we explore the application of an optimal waveform design scheme recently given by Kay, to the detection of elastic objects. We examine the benefits of optimal waveform design versus transmitting a linear FM waveform, as well as performance loss suffered by assuming a point target. The optimization approach designs the magnitude spectrum of the transmit waveform and, accordingly, there is an unlimited number of "optimal" transmit waveforms with the same magnitude spectrum. We propose a time domain optimization criterion to obtain the transmit waveform with the optimal magnitude spectrum and the smallest possible duration, as well as the waveform with the optimal magnitude spectrum and the longest possible duration. The former waveform allows for higher ping rates, but necessarily has higher time domain peak power, while the latter waveform has lower time domain peak power and lower ping rates. A method to obtain waveforms that are a blend of these two extremes is also presented, allowing a smooth trade-off between ping rate and peak power.

Paper Details

Date Published: 13 May 2010
PDF: 10 pages
Proc. SPIE 7696, Automatic Target Recognition XX; Acquisition, Tracking, Pointing, and Laser Systems Technologies XXIV; and Optical Pattern Recognition XXI, 76960F (13 May 2010); doi: 10.1117/12.850594
Show Author Affiliations
Brandon Hamschin, Univ. of Pittsburgh (United States)
Patrick Loughlin, Univ. of Pittsburgh (United States)


Published in SPIE Proceedings Vol. 7696:
Automatic Target Recognition XX; Acquisition, Tracking, Pointing, and Laser Systems Technologies XXIV; and Optical Pattern Recognition XXI
Firooz A. Sadjadi; David P. Casasent; Steven L. Chodos; Abhijit Mahalanobis; William E. Thompson; Tien-Hsin Chao, Editor(s)

© SPIE. Terms of Use
Back to Top