Share Email Print

Proceedings Paper

Detection of toxic industrial chemicals in water supplies using surface-enhanced Raman spectroscopy
Author(s): Kevin M. Spencer; James M. Sylvia; Sarah A. Spencer; Susan L. Clauson
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

An effective method to create fear in the populace is to endanger the water supply. Homeland Security places significant importance on ensuring drinking water integrity. Beyond terrorism, accidental supply contamination from a spill or chemical residual increases is a concern. A prominent class of toxic industrial chemicals (TICs) is pesticides, which are prevalent in agricultural use and can be very toxic in minute concentrations. Detection of TICs or warfare agents must be aggressive; the contaminant needs to be rapidly detected and identified to enable isolation and remediation of the contaminated water while continuing a clean water supply for the population. Awaiting laboratory analysis is unacceptable as delay in identification and remediation increases the likelihood of infection. Therefore, a portable or online water quality sensor is required that can produce rapid results. In this presentation, Surface-Enhanced Raman Spectroscopy (SERS) is discussed as a viable fieldable sensor that can be immersed directly into the water supply and can provide results in <5 minutes from the time the instrument is turned on until analysis is complete. The ability of SERS to detect several chemical warfare agent degradation products, simulants and toxic industrial chemicals in distilled water, tap water and untreated water will be shown. In addition, results for chemical warfare agent degradation products and simulants will be presented. Receiver operator characteristic (ROC) curves will also be presented.

Paper Details

Date Published: 5 May 2010
PDF: 9 pages
Proc. SPIE 7665, Chemical, Biological, Radiological, Nuclear, and Explosives (CBRNE) Sensing XI, 766511 (5 May 2010); doi: 10.1117/12.850188
Show Author Affiliations
Kevin M. Spencer, EIC Labs., Inc. (United States)
James M. Sylvia, EIC Labs., Inc. (United States)
Sarah A. Spencer, EIC Labs., Inc. (United States)
Susan L. Clauson, EIC Labs., Inc. (United States)

Published in SPIE Proceedings Vol. 7665:
Chemical, Biological, Radiological, Nuclear, and Explosives (CBRNE) Sensing XI
Augustus Way Fountain; Patrick J. Gardner, Editor(s)

© SPIE. Terms of Use
Back to Top