Share Email Print
cover

Proceedings Paper

A method for studying the effects of thermal deformations on optical systems for space application
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Optical instruments for space missions work in hostile environment, it's thus necessary to accurately study the effects of ambient parameters variations on the equipment performance. In particular, optical instruments are very sensitive to ambient conditions, especially temperature. This variable can cause dilatation and misalignment of the optical elements, and can also lead to rise of dangerous stresses in the optics. Optical elements displacements and surface deformations degrade the quality of the sampled images. In this work a method for simulating and studying the effects of the thermal deformations, particularly the impact on the expected optical performance, is presented. Optical elements and their mountings are modelled and processed by a thermo-mechanical Finite Element Model (FEM) analysis, reproducing expected operative conditions. The FEM output is elaborated into a MATLAB optimisation code; a non-linear least square algorithm is used to determine the equation of the best fitting nth degree polynomial, or the spherical surface of the deformed lenses and mirrors; model accuracy is 10-8 m. The obtained mathematical surface representations are then directly imported into ZEMAX raytracing software for sequential raytrace analysis. The results are spot diagrams, chief ray coordinates on the detector, MTF curves and Diffraction Encircled Energy variations due to simulated thermal loads. This analysis helps to design and compare different optical housing systems for finding a feasible mounting solution. The described method has been applied successfully to the optics and mountings of a stereo-camera for the BepiColombo mission. Different types of lenses and prisms constraints have been designed and analysed. The results show the preferable use of kinematic constraints, instead of using glue, to correctly maintain the instrument focus in orbit around Mercury considering an operative temperature range between -20°C and +30°C.

Paper Details

Date Published: 7 May 2010
PDF: 10 pages
Proc. SPIE 7691, Space Missions and Technologies, 769104 (7 May 2010); doi: 10.1117/12.850044
Show Author Affiliations
Elisa Segato, CISAS, Univ. degli Studi di Padova (Italy)
Vania Da Deppo, CNR-IFN, Univ. degli Studi di Padova (Italy)
Stefano Debei, Univ. degli Studi di Padova (Italy)
Gabriele Cremonese, INAF-Osservatorio Astronomico di Padova (Italy)


Published in SPIE Proceedings Vol. 7691:
Space Missions and Technologies
Joseph Lee Cox; Manfred G. Bester; Wolfgang Fink, Editor(s)

© SPIE. Terms of Use
Back to Top