Share Email Print
cover

Proceedings Paper

Structural health monitoring of PC structures with novel types of distributed sensors
Author(s): Caiqian Yang; Zhishen Wu; Yufeng Zhang
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

In this paper, the structural health monitoring of a pre-stressed concrete (PC) structure based on two types of distributed sensing techniques is addressed. The sensing elements are Brillouin scattering-based fiber optic sensors (FOSs) and HCFRP (hybrid carbon fiber reinforced polymer) sensors composed of three types of carbon tows. Both types of sensors are characterized by a broad-based and distributed sensing function. The HCFRP sensors are bonded on PC tendon, steel reinforcing bar, and embedded in tensile and compressive concrete sides with epoxy resins and putties. The FOSs are embedded in the tensile and compressive concrete sides where the HCFRP sensors are embedded as well. The distributed sensors are arranged to detect and monitor the initiation and propagation of cracks, yielding of steel reinforcements and corrosion of PC tendons. The experimental investigations demonstrate that the initiation and location of cracks, yielding of steel reinforcements, corrosion of PC tendons and structural health of PC structures can be effectively detected and monitored with such kinds of distributed sensing systems.

Paper Details

Date Published: 9 April 2010
PDF: 11 pages
Proc. SPIE 7649, Nondestructive Characterization for Composite Materials, Aerospace Engineering, Civil Infrastructure, and Homeland Security 2010, 76490A (9 April 2010); doi: 10.1117/12.848898
Show Author Affiliations
Caiqian Yang, Southeast Univ. (China)
Zhishen Wu, Southeast Univ. (China)
Jiangsu Transportation Research Institute (China)
Yufeng Zhang, Jiangsu Transportation Research Institute (China)


Published in SPIE Proceedings Vol. 7649:
Nondestructive Characterization for Composite Materials, Aerospace Engineering, Civil Infrastructure, and Homeland Security 2010
Peter J. Shull; Aaron A. Diaz; H. Felix Wu, Editor(s)

© SPIE. Terms of Use
Back to Top