Share Email Print
cover

Proceedings Paper

An optical coherence tomography study for imaging the round window niche and the promontorium tympani
Author(s): T. Just; E. Lankenau; G. Hüttmann; H. W. Pau
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

An optical coherence tomography study for imaging the round window niche and the promontorium tympani Tympanosclerosis may involve the tympanic membrane, the ossicles, and the oval and round window niche, respectively. The surgical treatment of the obliterated oval window niche is most challenging. Beside stapesplasty, vibroplasty coupling the floating mass transducer (FMT) onto the round window niche and into a new, so-called third window is indicated. In the latter situation, drilling a hole into the promontorium is necessary to couple the FMT close to the membranous endosteum. Damage of the membranous inner ear must be avoided. The question was whether OCT is useful to identify the endosteum and to provide microanatomical information of the round window niche. OCT was carried out on human temporal bone preparations, in which a third window was drilled leaving the membranous labyrinth and the fluid-filled inner ear intact and the overhang of the round window niche was removed. An especially equipped operating microscope with integrated OCT prototype (spectral-domain-OCT) was used. The OCT images and 3D reconstructions demonstrate the usefulness of OCT to measure the drilling cavity, to visualize the inner ear structures, and to obtain microanatomical information of the round and oval window niche. These findings may have an impact on stapes surgery, on cochlea implantation, and on vibroplasty coupling the FMT onto the round and third window. OCTguided drilling allows for more precise identification of the intact inner ear.

Paper Details

Date Published: 2 March 2010
PDF: 7 pages
Proc. SPIE 7548, Photonic Therapeutics and Diagnostics VI, 754833 (2 March 2010); doi: 10.1117/12.848384
Show Author Affiliations
T. Just, Univ. Rostock (Germany)
E. Lankenau, Institute for Biomedical Optics, Univ. zu Lübeck (Germany)
G. Hüttmann, Institute for Biomedical Optics, Univ. zu Lübeck (Germany)
H. W. Pau, Univ. Rostock (Germany)


Published in SPIE Proceedings Vol. 7548:
Photonic Therapeutics and Diagnostics VI
Anita Mahadevan-Jansen; Andreas Mandelis; Brian Jet-Fei Wong; Nikiforos Kollias; Henry Hirschberg; Kenton W. Gregory; Reza S. Malek; E. Duco Jansen; Guillermo J. Tearney; Steen J. Madsen; Bernard Choi; Justus F. R. Ilgner; Haishan Zeng; Laura Marcu, Editor(s)

© SPIE. Terms of Use
Back to Top