Share Email Print

Proceedings Paper

Studies on molecular recognition of thymidines with molecularly imprinted polymers
Author(s): Zhen-He Chen; Ai-Qin Luo; Li-Quan Sun
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Molecularly imprinted polymers (MIPs) with excellent molecular recognition ability have been used in chemical sensors, chromatographic separation and biochemical analyses. Thymidine is an important part of DNA for biomolecular recognition and the intermediate of many medicines. The polymers imprinted with the template of thymidine and 5'-Otosylthymidine have been prepared, using a non-proton solvent, acetonitrile as the porogen. Direct imprinting with thymidine could not form strong molecular interaction sites in this system. Relative MIPs were obtained by bulk polymerization and their adsorption capacities were investigated. The adsorption capacities of MIP (P2) and nonimprinted polymer (P20) for thymidine are 0.120 mg•g-1and 0.103 mg•g-1, respectively. The imprinting factor is 1.17. As 5'-O-tosylthymidine is more soluble than thymidine moiety in acetonitrile and give rise to more sites of molecular recognition. The results demonstrated that the imprinted polymers were able to bind and recognize thymidine moderately in acetonitrile. MIPs imprinted with 5'-O-tosylthymidine like nature enzymes displayed some recognition ability to its analogues. The insoluble derivatives in the non-proton solvent can be an effective template to prepare efficient imprinting recognition sites.

Paper Details

Date Published: 20 October 2009
PDF: 6 pages
Proc. SPIE 7493, Second International Conference on Smart Materials and Nanotechnology in Engineering, 74931Y (20 October 2009); doi: 10.1117/12.847732
Show Author Affiliations
Zhen-He Chen, Beijing Institute of Technology (China)
Ai-Qin Luo, Beijing Institute of Technology (China)
Li-Quan Sun, Beijing Institute of Technology (China)

Published in SPIE Proceedings Vol. 7493:
Second International Conference on Smart Materials and Nanotechnology in Engineering
Jinsong Leng; Anand K. Asundi; Wolfgang Ecke, Editor(s)

© SPIE. Terms of Use
Back to Top